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2 1/2 D visual servoing with respect to unknown objects
through a new estimation scheme of camera displacement
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Abstract. Classical visual servoing techniques need a strong a priori knowledge of the shape and the
dimensions of the observed objects. In this paper, we present how the 2 1/2 D visual servoing scheme we
have recently developed, can be used with unknown objects characterized by a set of points. Our scheme
is based on the estimation of the camera displacement from two views, given by the current and desired
images. Since vision-based robotics tasks generally necessitate to be performed at video rate, we focus
only on linear algorithms. Classical linear methods are based on the computation of the essential matrix.
In this paper, we propose a different method, based on the estimation of the homography matrix related
to a virtual plane attached to the object. We show that our method provides a more stable estimation
when the epipolar geometry degenerates. This is particularly important in visual servoing to obtain a
stable control law, especially near the convergence of the system. Finally, experimental results confirm the
improvement in the stability, robustness, and behaviour of our scheme with respect to classical methods.
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1. Introduction

Standard eye-in-hand visual servoing approaches,
that is position-based and image-based visual ser-
voings, need a strong a priori knowledge of the
3D model of the observed object [29, 14, 17]. On
one hand, in position-based visual servoing, the
features used as inputs of the control scheme are
expressed in the 3D Cartesian space [30]. To com-
pute such features, the pose of the object with
respect to the camera is estimated at each itera-
tion of the control law. Numerous methods exist
to recover the pose of an object (see [6] for ex-
ample), but they are all based on the knowledge
of a perfect geometric 3D model of the object.
On the other hand, in image-based visual servo-

ing, the visual features used as inputs of the con-
trol scheme are directly expressed in the 2D image
space [9]. However, the internal part of the control
scheme relies on an estimation or an approxima-
tion of the interaction matrix (also called image
Jacobian). This matrix describes the relationship
between the motion of the visual features in the
image and the 3D motion of the camera mounted
on the end-effector of the robot. If translational
motions have to be controlled (which is gener-
ally the case), it thus depends on the depth from
the camera to each considered geometrical feature.
Once again, a pose estimation algorithm is gener-
ally used to estimate the 3D parameters involved
in the interaction matrix. In some cases [9], a
coarse approximation, corresponding to the value
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of the interaction matrix computed at the desired
robot position, is sufficient. However, an a priori
knowledge on the 3D shape and dimensions of the
observed object is still necessary to determine the
desired value of the same 3D parameters. Another
method in image-based visual servoing consists in
numerically estimating the coefficients of the in-
teraction matrix, without taking into account its
analytical form [15, 19]. Contrarily to the previous
ones, this method does not need any 3D a priori
knowledge. However, it is unfortunately impossi-
ble to demonstrate and to ensure its stability.

In this paper, we present how the 2 1/2 D
visual servoing scheme we have recently devel-
oped [24, 25], can be used with unmodeled objects.
As will be detailed later, this scheme does not ne-
cessitate any 3D knowledge of the considered ob-
ject, which increases the versatility and the appli-
cation area of visual servoing. Furthermore, this
scheme combines the advantages of classical visual
servoings techniques and avoids their respective
drawbacks. More precisely, the first drawback in
position-based visual servoing is that none con-
trol is performed in the image, which implies that
the object may get out of the camera field of view
during the servoing (leading of course to its fail-
ure), especially if the initial robot position is far
away from its desired one. The second drawback
is that strong hypotheses have to be stated in or-
der to demonstrate the stability of the system [3].
Image-based visual servoing also suffers from sev-
eral drawbacks [3]: first, the interaction matrix
may become singular during the servoing, which
of course leads to an unstable behaviour. Second,
local minima may be reached, which means that
the final robot position does not correspond to the
desired one. If another control strategy is used to
avoid potential local minima, the motion in the
image becomes unpredictable, which means that
it is impossible to ensure that the object will al-
ways remain in the camera field of view. Further-
more, the robot trajectory may not be satisfactory
because of the strong coupling in the coefficients
of the interaction matrix. Finally, even if image-
based visual servoing is known to be very robust
in practice with respect to camera and robot cal-
ibration errors [8], it is in general impossible to
exhibit exploitable analytical stability conditions.

As already described in [25] which was de-
voted to the automatic control part of our scheme,
2 1/2 D visual servoing consists in combining vi-
sual features obtained directly from the image,
and estimated 3D information. As will be recalled
in Section 2, we thus obtain a block-triangular in-
teraction matrix that provides interesting decou-
pling properties. As detailed in [24, 25], it is also
possible to be sure that the convergence will be
ensured and that the object will remain in the
camera field of view whatever the initial robot po-
sition. Analytical conditions to ensure the global
stability of the system even in the presence of
calibration errors have also been determined. In
this paper, we focus on the estimation of the 3D
parameters involved in our control scheme. If a
3D CAD model of the object is available, it is
of course possible to obtain these parameters us-
ing a classical pose estimation algorithm. How-
ever, we will see that all these parameters can be
determined from an Euclidean reconstruction up
to a scalar factor. Such a reconstruction can be
obtained from two images of an unknown object
characterized by a set of points (assumed to be
matched) [20, 10]. In our case, the first image is
the desired one (acquired at the desired robot po-
sition during an off-line learning step), while the
second image is the current one (acquired at each
iteration of the control law).

The same idea of using an unknown object in
visual servoing has been recently presented in [1].
However, the control scheme described in that pa-
per corresponds to a classical position-based vi-
sual servoing, which means that it is subject to
the drawbacks of this approach we have recalled
above. Furthermore, the Euclidean reconstruction
is obtained from the essential matrix, and we will
show in this paper that it implies an unstable be-
haviour near the convergence of the system.

The Euclidean reconstruction from two views is
well known to be the motion and structure from
motion problem. It is, by its own nature, non-
linear. Therefore, the classical approach to solve
this problem is composed of two steps: using first
a linear algorithm to provide an initialisation to a
non-linear algorithm [20]. In this paper, we point
out our attention only on the first linear stage,
since the time processing of non linear algorithms
are generally not compatible with the rate of vi-
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sual servoing schemes (that have to be as close as
possible to the video rate). Several methods were
proposed to linearly solve the motion and struc-
ture from motion problem. They are generally
based on the computation of the fundamental ma-
trix [23] if pixel image points coordinates are used,
or of the essential matrix [21, 13] if normalized
image points coordinates are used. However, the
epipolar geometry degenerates in some cases (for
example if the motion is a pure rotation or if the
considered object is planar [22]). If such degener-
ate configurations are not detected, the estimation
of motion and structure will be completely unsta-
ble in their neighbourhood, which will induce an
unstable and thus unsatisfactory behaviour of the
control scheme. Unfortunately, in visual servo-
ing, the displacement that the robot has to realize
is of course unknown, and it may be possible to
encounter a degenerate case even for the initial
robot position. Moreover, a positioning task is
achieved when the two considered images of the
object are the same (image noise measurement
excepted), which of course corresponds to a de-
generate case for the epipolar geometry. Dealing
with these degenerate configurations is thus par-
ticularly important in visual servoing.

The motion and structure can also be estimated
from an homography matrix related to a virtual
plane attached the object [11, 31]. The homog-
raphy matrix may be estimated jointly to the
epipole using, for example, the “virtual parallax
algorithm” (VP) [2]. However, we will see that
the epipole estimation is unnecessary for the ho-
mography estimation. The number of unknowns
using the VP algorithm is thus not minimal if we
are only interested in the estimation of the mo-
tion and structure (which is the case in our visual
servoing problem). Furthermore, there are three
supplementary epipolar configurations where it is
impossible to extract the homography matrix with
the VP algorithm.

For these reasons, we propose a new method,
again based on virtual parallax, for the direct esti-
mation of the homography matrix relative to a vir-
tual plane. With an adequate choice of the three
points defining the virtual plane, we will see that
it provides more stable results than the classical
methods in the degenerate configurations for the
epipolar geometry, as soon as image noise mea-

surements are taken into account. Indeed, even
if the degenerate cases are common to any recon-
struction method, numerical stability of the esti-
mation depends of the chosen method, and we ex-
plain in this paper why the one we propose gives
satisfactory results. We have however to note that
the problem of features matching has not been
considered. Our method, in its current form, is
thus unable to take into account potential out-
liers.

The use of planes and parallax for motion esti-
mation has also been studied in [18] and [5], but
using the hypothesis that four coplanar points can
be extracted in both images. We will see that the
method we propose does not need any hypothe-
sis. Furthermore, the issue of handling degener-
ate situations has been recently addressed in [27],
switching from epipole to homography estimation
when degeneracies occur. However, in presence of
noisy measurements, detecting such degeneracies
is very complex. Moreover, even if the detection
is perfectly realized, a discontinuity of the estima-
tion will be obtained at each change of the used
method if image noise and calibration errors exist.
Since we use the same estimation method in all
cases, our visual servoing scheme does not present
such discontinuities.

The paper is organised as follows. In Section 2,
we describe the 2 1/2 D visual servoing scheme
and show which information provided by an Eu-
clidean reconstruction is needed to design it. In
Section 3, we review the classical linear methods
to compute the fundamental matrix and then to
extract the motion from the camera intrinsic pa-
rameters and the essential matrix. In Section 4,
we propose an algorithm for the estimation of a
collineation relative to a virtual plane attached
to an unknown three-dimensional object charac-
terized by a set of points. Knowing the camera
internal parameters, the displacement of the cam-
era can be extracted from the corresponding ho-
mography matrix. In Section 5, we compare our
approach with the classical algorithms, especially
in the particular case when the epipolar geometry
is close to be degenerate. Finally, experimental
results obtained using an eye-in-hand system are
presented in Section 6.
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2. The 2 1/2 D visual servoing

One of the typical applications of visual servoing
consists in positioning an eye-in-hand system rela-
tive to an object, for a grasping task for instance.
Generally, the positioning task is divided into two
steps. In a first off-line learning step (see Fig-
ure 1), the camera is moved to its desired posi-
tion with respect to the object (which corresponds
to camera pose F∗). The corresponding image
is acquired and the extracted visual features are
stored. In the second on-line step, after the cam-
era and/or the object have been moved, the cam-
era motion is controlled so that the current vi-
sual features (corresponding to camera pose F)
reach their desired position in the image. In other
words, the rotation matrix R and the translation t
between F and F∗ have to reach the identity ma-
trix and 0 respectively.

���

(a) final position

�

(b) initial position

Fig. 1. Visual servoing with an eye-in-hand system

The 2D 1/2 visual servoing scheme consists in
combining 2D image features and 3D information.
More precisely, the feature vector used as input of
the control law is selected as:

s = [x, y, z, θuT ]T (1)

where:

• x and y are the normalized metric coordinates
of an image point, computed from the coor-
dinates of this point measured in pixels and
an estimation (generally coarse) of the cam-
era intrinsic parameters ;

• z = log Z, Z being the depth of the considered
point;

• θ and u are respectively the angle and axis of
rotation extracted from R.

The task function e, that has to be regulated to
0 [26], is directly obtained from the error (s− s∗),
where s∗ is the desired value for s. More precisely,
e is given by:

e = [x − x∗, y − y∗, log ρ, θuT ]T (2)

where the first two components of e are directly
computed from the current and desired images,
and the last four components of e are composed of
3D information that have to be estimated, ρ being
defined as the ratio Z/Z∗ between the current and
desired depths of the selected point.

It is shown in [24, 25] that the corresponding in-
teraction matrix, defined such that ė = L v where
v is the camera velocity screw, is an upper block-
triangular matrix given by:

L =

[
1
Z
Lv Lvω

03 Lω

]
(3)

where:

Lv =



−1 0 x
0 −1 y
0 0 −1




Lvω =




xy −(1 + x2) y
(1 + y2) −xy −x

−y x 0




and:

Lω = I3 −
θ

2
[u]× +

(
1 −

sinc(θ)

sinc2( θ
2 )

)
[u]2× (4)

with sinc(θ) = sin(θ)/θ, [u]× being the antisym-
metric matrix associated to u.

The determinant of Lω is

det(Lω) = 1/sinc2(
θ

2
) (5)

and it is thus singular only for θ = 2kπ, ∀k ∈ Z
∗

(i.e. out of the possible workspace). We have also
the following nice property:

L−1

ω θ u = θ u (6)

We can note that L is singular only in degenerate
cases (such as Z = 0 and 1/Z = 0). Finally, if
the the object is known to be motionless and if a
simple exponential decrease of each component of
e is specified, we obtain the following control law:

v = −λ L−1 e (7)
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where λ tunes the convergence rate. More pre-
cisely, we have:

v = −λ

[
Z L−1

v −Z L−1
v Lvω

0 I3

]



x − x∗

y − y∗

log ρ
θu


 (8)

If the CAD model of the object is known, a clas-
sical pose estimation algorithm can be used, and
all the values involved in (8) are available at each
iteration. Otherwise, if we deal with an unknown
object, we can use an Euclidean reconstruction
between the current and desired views, as we are
going to see in the following sections. In that case,
ρ = Z/Z∗ and uθ can be computed, and the only
unknown parameter is the depth Z. However, Z
can be written Z = ρZ∗ and the only unknown
parameter of our control scheme becomes the con-
stant scalar value Z∗. Furthermore, this value has
not to be precisely determined (by hand in the ex-
periments) since, as demonstrated in [25], it has a
small influence on the stability of the system. In
practice, an approximate value is chosen during
the off-line learning stage.

Finally, if we consider possible calibration and
measurement errors, the control law is given by:

v = −λ L̂−1 ê (9)

where ê is the measured value of e and L̂−1 is an
approximation of L−1:

L̂−1 =

[
Ẑ∗ρ̂ L̂−1

v −Ẑ∗ρ̂ L̂−1
v L̂vω

0 I3

]
(10)

Let us emphasise that L̂−1 is an upper triangu-
lar square matrix without any singularity in the
whole task space. The stability and convergence
of the control law can thus be obtained for any ini-
tial camera position such that the considered ob-
ject is in the camera field of view. Furthermore,
such a decoupled system provides a satisfactory
camera trajectory in the Cartesian space. Indeed,
the rotational control loop is decoupled from the
translational one (see Figure 2), and the chosen
reference point is controlled by the translational
camera d.o.f. such that its trajectory is a straight
line in the state space, and thus in the image. If
a correct calibration is available, this point will
thus always remain in the camera field of view
whatever the initial camera position. Of course,
this property does not ensure that all the object

will remain visible. In practice, it is possible to
change the point during servoing, and we can se-
lect as reference point the nearest the bounds of
the image plane. However, this solution leads to
a discontinuity in the translational components of
the camera velocity at each change of point. An-
other strategy is to select the reference point as
the nearest of the center of gravity of the object
in the image. This would increase the probability
that the object remains in the camera field of view,
but without any complete assurance. In [25], an
adaptive control law is proposed to deal with this
problem.
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Fig. 2. Block diagram of the 2 1/2 D visual servoing

Furthermore, it is well known that the local
asymptotic stability of the closed-loop system is
ensured if all the eigenvalues of LL̂−1 are posi-
tive. Similarly, the global asymptotic stability is
ensured (which implies the decreasing of ‖e‖ at

each iteration) if the sufficient condition LL̂−1 > 0
is satisfied. Determining analytical and practi-
cal conditions for the stability of image-based and
position-based visual servoings is in general im-
possible (or under very strong hypotheses [3]).
On the other hand, thanks to the nice form of L
and L̂−1, it is possible to determine, when an Eu-
clidean reconstruction is performed, the necessary
and sufficient conditions for local asymptotic sta-
bility, and sufficient conditions for global asymp-
totic stability in the presence of camera calibra-
tion errors (see [24, 25] for more details). For ex-

ample, it is possible to determine bounds on Ẑ∗ in
function of calibration errors such that the global
stability of the system is ensured whatever the ini-
tial camera position.

We now describe how the 3D parameters in-
volved in our control law can be estimated from a
set of matched points in the current and desired
images.
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3. Camera displacement from the essen-
tial matrix

In this section, we review the classical approach
to recover the displacement of a camera from two
views of an unknown object. In our case, the first
image corresponds to the desired one (acquired
during the off-line learning step), and the second
image to the current one (acquired at each iter-
ation of the control law). The desired position
of the camera optical centre is denoted C∗, while
its current position is denoted C (see Figure 3).
The perspective projection of a point P ∈ P

3 in
the first image is denoted p∗ (with homogeneous

coordinates p∗ =
[

u∗ v∗ 1
]T

). Similarly, the
projection of P in the second image is denoted p

(with homogeneous coordinates p =
[

u v 1
]T

).
p and p∗ are measured in pixels and are assumed
to be matched.

���

� �

�� � �

�

�

Fig. 3. Epipolar geometry

3.1. The epipolar geometry

It is well known that the plane defined by the three
points C, C∗ and P intersects the image planes
in two epipolar lines. The first one is defined by
(p∗, e∗), and the second one, denoted l, is defined
by (p, e), where e∗ and e are the epipoles (i.e., the
projection of C and C∗ in the image planes). Using
projective coordinates, the epipolar line l can be
written:

l = p ∧ G∞p∗ (11)

where G∞ is the collineation relative to the plane
at infinity [10]. Since the epipole e lies on line
l, we have lT e = 0, which can be written, using
equation (11), as:

pT Fp∗ = 0 (12)

where F = [e]×G∞ is the fundamental matrix
([e]× is the crossproduct matrix associated to vec-
tor e). In the general case, F is rank 2, which
implies a non-linear constraint on the nine entries
of F [23].

3.2. Fundamental matrix estimation

We now review two linear algorithms to estimate
the fundamental matrix. We remind that we only
consider linear algorithms because of time process-
ing constraints imposed by visual servoing.

3.2.1. The eight points algorithm. The classi-
cal approach to compute the epipolar geometry is
the eight points algorithm [21, 13]. Since equa-
tion (12) is true for each pair of points (pj , p∗

j ), it
is possible to obtain a linear system if n pairs are
available:

Cf f = 0 (13)

where:

f =
[

f11 f12 f13 f21 f22 f23 f31 f32 f33

]T

are the 9 unknown entries of F and Cf is a (n×9)
measurement matrix. System (13) is homoge-
neous and, since F is defined up to a scale fac-
tor, a minimum of 8 pairs of points are necessary
to solve (13). In presence of noise, the linearized
estimation problem can be written:

min
f

‖Cf f‖ subject to ‖f‖ = 1 (14)

The solution of this problem is obtained by
performing the Singular Values Decomposition
(SVD) of the measurement matrix Cf = USVT .
The solution f of the system is the column of V
corresponding to the minimal singular value of S
(0 in absence of noise).

Let us remark that, if the epipole is undefined
in the image (for example if the motion is a pure
rotation or if the object is planar [22]), the funda-
mental matrix is also undefined, which implies an
unstable estimation near this particular case. We
will see in Section 4 that the method we propose
is able to adequately deal with this problem.

Furthermore, we can note that this method does
not take into account the rank 2 constraint on the
fundamental matrix. This constraint is generally
introduced a posteriori using a non-linear algo-
rithm [7, 23]. Since the aim of this paper is to
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focus on linear algorithms, the non-linear criteria
are not detailed here.

3.2.2. The virtual parallax algorithm. To sim-
plify the computation of matrix F, Boufama et al.
[2] perform a change of projective coordinates us-
ing 4 matched points in each image. These points
are chosen such that not any three of them are
collinear in the images. Let M and M∗ be the
matrices of change of coordinates, of dimension
(3 × 3), respectively calculated as a function of
p1,p2,p3,p4 and p∗

1,p
∗
2,p

∗
3,p

∗
4. The image points

p̃j =
[

ũj ṽj w̃j

]T
and p̃∗

j =
[

ũ∗j ṽ∗j w̃∗

j

]T
in the

new coordinate system are given by p̃j = M−1pj

and p̃∗
j = M∗−1p∗

j . Choosing
[
p̃1 p̃2 p̃3

]
=[

p̃∗

1 p̃∗

2 p̃∗

3

]
= I3 for the first three points, the

collineation matrix G̃, related to the plane π de-
fined by these three points, is diagonal when ex-
pressed in the new coordinate system:

G̃ = M−1GM∗ = diag(g̃u, g̃v, g̃w) (15)

Then, the fundamental matrix can be written in
the new coordinate system as F̃ = [ẽ]×G̃ where
ẽ = M−1e is the epipole in the new coordinate
system. Using equation (12), we obtain:

p̃T [ẽ]×G̃ p̃∗ = 0 (16)

which is polynomial of degree two in four un-
knowns (i.e., two unknowns for the epipole and
two unknowns for the diagonal collineation matrix
since they are defined up to a scale factor). After
few developments, equation (16) can be written
as [2]:

Cf̃ f̃ = 0 (17)

where f̃ =
[

ẽxg̃w ẽxg̃v ẽy g̃u ẽy g̃w ẽz g̃v ẽz g̃u

]T
.

This new equation is linear homogeneous in 6 un-
knowns. Then at least five points not belonging to
π are needed to solve linearly the problem. If m
(m ≥ 5) points are available, the matrix Cf̃ is of
dimension (m × 6), and the system can be solved
by performing the SVD of Cf̃ = USVT . Once

again, the solution f̃ is the column of V corre-
sponding to the minimal singular value of S (0 in

absence of noise). After the vector f̃ is obtained,
the original unknowns can easily be determined.

As in the previous case, this method is inade-
quate when the epipole is undefined in the image.
Furthermore, there are three supplementary sin-

gular cases where the collineation matrix G̃ can-

not be estimated. Indeed, if ẽ =
[

1 0 0
]T

, only

g̃2/g̃3 is known; if ẽ =
[

0 1 0
]T

, only g̃1/g̃3

is known; and, if ẽ =
[

0 0 1
]T

, only g̃1/g̃2 is
known. If these particular cases can be detected,
another algorithm can be used. However, in pres-
ence of noise, the detection of such particular cases
is quite difficult and, if the detection fails, the re-
sults will not be accurate since zero values estima-
tion is very sensitive to numerical errors.

The main advantage of the virtual parallax al-
gorithm with respect to the eight points algo-
rithm is that, even degenerating in the above sin-
gular cases, it can provide the collineation ma-
trix, which is always defined contrarily to the
fundamental matrix. However, in this algorithm,
the collineation matrix estimation depends on the
epipole estimation, and the number of unknowns
is not minimal. For these reasons, we propose
in Section 4 a method that determines directly
the collineation matrix without estimating the
epipole.

3.3. The Essential matrix

The fundamental matrix F is estimated using
pixel image coordinates. From F, the essential
matrix E can be computed as follows:

E = AT FA (18)

A being a non-singular (3 × 3) matrix containing
the intrinsic parameters of the camera:

A =




fku −fku cot(θ) u0

0 fkv/ sin(θ) v0

0 0 1


 (19)

where u0 and v0 are the coordinates of the princi-
pal point (in pixels), f is the focal length (in me-
ters), ku et kv are the magnifications respectively
in the −→u and −→v direction (in pixels/meters), and
θ is the angle between these axes.

Matrix E must satisfy the Huang-Faugeras con-
straints [16]: σ1 = σ2 and σ3 = 0 (where σ1, σ2

and σ3 are the singular values of E). Indeed, E can
be also written as the product of a skew-symmetric
matrix and a rotation matrix:

E = [t]×R (20)
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where rotation matrix R and translation t repre-
sent the camera displacement between F and F∗.
The Huang-Faugeras constraints can be imposed
a posteriori by using the algorithm of Tsai and
Huang [28] to estimate the motion parameters.
This method has been proved to be optimal by
Hartley [12]. From E, the rotation matrix R and
the direction of translation t/‖t‖ can thus be di-
rectly calculated. All the values involved in our
visual servoing scheme (except Z∗ of course) are
thus available: axis u and angle θ directly from

R, while ρ is given by
‖[t]

×
Rm

∗‖

‖[t]
×
m‖ .

If the camera is coarsely calibrated (which is
generally the case in visual servoing), it is clear
that, even if F is perfectly estimated, E will be
biased, which will induce errors on the estimation
of the motion parameters. The closed-loop con-
trol used in visual servoing is generally able to
overcome such problems. In fact, as already ex-
plained, the main problem encountered with the
above methods occurs when the epipolar geometry
is undefined, which is unfortunately the case when
the camera comes near its desired position. Near
convergence, unstable estimations will cause an
unstable control law, which leads of course to an
unsatisfactory behaviour. In the following section,
we propose a different method to estimate the pa-
rameters involved in our visual servoing scheme.
We will see in Section 5 that it provides more sta-
ble results near convergence, and is thus more ad-
equate in visual servoing.

4. Camera displacement from the homog-
raphy matrix

We now propose a linear algorithm to directly esti-
mate the homography matrix relative to a virtual
plane attached to the object.

4.1. The virtual parallax

Let us consider three 3D points Pi of the object
(i = 1, 2, 3). We will see at the beginning of the
next subsection how these points have to be cho-
sen in practice. We here only consider that they
are not collinear in both images, and thus define a
virtual plane, denoted π (see Figure 4). It is well
known that each image point with projective co-

ordinates pi in F , is related to the corresponding
image point with projective coordinates p∗

i in F∗,
by a collineation G such that [11]:

pi ∝ Gp∗
i {i = 1, 2, 3} (21)

where G is a homogeneous full rank (3×3) matrix.
Let us remark that G is defined up to a scalar fac-
tor, therefore one of the entries of G can be set to
1 without loss of generality. Equation (21) is valid
for all points lying on π. Therefore, if the consid-
ered object is known to be planar and if more than
three points are available, the 8 unknown entries
of G can be estimated by solving a simple linear
homogeneous system obtained from pi∧Gp∗

i = 0.
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Fig. 4. Virtual parallax

Now, let us suppose that the structure of the
object is not planar. If a point Pj does not belong
to π, the line (C∗Pj) and plane π intersect in a

virtual 3D point P
′

j (see Figure 4). P
′

j and Pj

project on the same point p∗
j in the first image

and on two different points (pj and the virtual

point p
′

j = Gp∗
j ) in the second image (parallax

effect). The equation of the epipolar line lj can
be now written as follow:

lj = pj ∧ Gp∗
j (22)

4.2. Collineation estimation

Our approach, similar to the one proposed in [4],
is based on the constraint that all the epipolar
lines meet in the epipole. Hence, for each set of
three epipolar lines (22), we have:

∣∣ lj lk ll
∣∣ = 0 (23)
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which means:

∣∣ pj ∧ Gp∗
j pk ∧ Gp∗

k pl ∧ Gp∗
l

∣∣ = 0 (24)

However, equation (24) is non-linear with respect
to the entries of the collineation matrix. In or-
der to simplify the computation of G, a change of
projective coordinates is performed. In contrast
with Boufama [2] and Couapel [4], the change of
coordinates matrices M and M∗ are constructed
using only the three reference points chosen to
define π. The transformation matrices are given
by M =

[
p1 p2 p3

]
and M∗ =

[
p∗

1 p∗
2 p∗

3

]
.

Choosing again
[
p̃1 p̃2 p̃3

]
=
[
p̃∗

1 p̃∗

2 p̃∗

3

]
=

I3, the collineation matrix G̃ in the new coor-
dinates system is diagonal: G̃ = M−1GM∗ =
diag(g̃u, g̃v, g̃w). It is clear that the choice of the
three reference points is important in our method.
In order to obtain an accurate and robust estima-
tion, this choice is done automatically by select-
ing the three points which maximize the surface
of the corresponding triangle in both images. Fur-
thermore, we can note that the change of coordi-
nates normalizes the data, which is very important
to obtain an accurate estimation in the projective
domain [13].

Equation (24) can be written in the new coor-
dinate system as:

∣∣ p̃j ∧ G̃p̃∗
j p̃k ∧ G̃p̃∗

k p̃l ∧ G̃p̃∗
l

∣∣ = 0 (25)

This equation based on virtual parallax is homo-
geneous and polynomial of degree three. Con-
trarily to equation (16) used in the virtual par-
allax algorithm, equation (25) does not depend
on the epipole and contains only three unknowns.
This is particularly important since the three sin-
gular cases of the virtual parallax method (ẽ =[

1 0 0
]T

, etc.) are not degenerate in our
method. Furthermore, since the estimation of
the epipole is unnecessary in our visual servo-
ing scheme, we have no interest in introducing
its components as supplementary unknowns. In
other words, we benefit by the well known numer-
ical analysis property that a more robust solution
with respect to noise is obtained when the number
of unknowns is minimal.

After computation, (25) can be written under
the form:

Cg̃x = 0 (26)

where the entries of the measurement matrix Cg̃

are given in Appendix, and:

x
T

=
[

g̃2

ug̃v g̃2

v g̃u g̃2

ug̃w g̃2

v g̃w g̃2

wg̃u g̃2

w g̃v g̃ug̃v g̃w

]

There are n!/(6(n − 3)!) possibilities to choose
three different epipolar lines in a set of n epipo-
lar lines (one line for each point in the image).
We thus obtain m = n!/(6(n− 3)!) equations and
seven unknowns. At least eight points (three ref-
erence points and five supplementary points) are
thus needed to solve the problem, exactly as in the
previous algorithms. Once again, the problem can
be solved by performing the SVD of Cg̃ = USVT

and by selecting as solution the column of V cor-
responding to the minimal singular value (0 in
absence of noise). However, Cg̃ is of dimension
(m × 7) with m >> 7. In practice, we pre-
fer to obtain the same solution from the SVD of
CT

g̃ Cg̃ = VST SVT , which is of dimension (7×7).
Memory space and time processing are thus mini-
mized. Finally, the original unknowns can be com-
puted by solving the following linear homogeneous
system:




−x2 x1 0
x5 0 −x3

−x7 x3 0
x7 0 −x1

−x4 x7 0
x4 0 −x2

x6 0 −x7

0 −x6 x3







g̃u

g̃v

g̃w


 = 0 (27)

Contrarily to the algorithms described in the
previous section, the collineation matrix can be
better estimated because the dimension of the
problem is reduced and the epipole estimation is
avoided. Furthermore, our method does not seem
to introduce any new degenerate case. We explain
now why this method provides indeed more accu-
rate results when the epipolar geometry degener-
ates (in Sections 5 and 6 are given the experiments
which confirm the following theoretical results).

The epipolar geometry degenerates when the
projections of corresponding points are related by
a collineation. This happens when all 3D points
lie on a plane or when the camera performs a pure
rotation. In this case, the columns of the determi-
nant in equation (24) become null. However, they
are not null for any g̃u, g̃v, g̃w since the collineation
matrix is always defined and unique. Indeed, g̃u,
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g̃v and g̃w have to verify equation (26), that is:

c1g̃
2
ug̃v + c2g̃

2
v g̃u + c3g̃

2
ug̃w + c4g̃

2
v g̃w + (28)

c5g̃
2
wg̃u + c6g̃

2
wg̃v + c7g̃ug̃v g̃w = 0

If the matched points are related by a collineation,
we have: 


ũ
ṽ
w̃


 =




gu 0 0
0 gv 0
0 0 gw






ũ∗

ṽ∗

w̃∗


 (29)

We show in Appendix that the coefficients of equa-
tion (28) become in that case:

c1 =
α

g2
ugv

, c2 = −
α

g2
vgu

, c3 = −
α

g2
ugw

,

c4 =
α

g2
vgw

, c5 =
α

g2
wgu

, c6 = −
α

g2
wgv

,

c7 = 0

where α 6= 0 except if the three considered points
are collinear. Setting g̃w = gw = 1 without loss
of generality, equation (28) can be factorized as
follows:

α(g̃u − gu)(g̃v − gv)(g̃ugv − g̃vgu) = 0 (30)

We thus obtain three different sets of solutions:

{g̃u = gu,∀g̃v} ,
{g̃v = gv,∀g̃u} ,
{g̃u = gug̃v/gv,∀g̃v}

(31)

It is worth noting that all these solutions meet in
a single solution, that is the expected one: g̃u =
gu, g̃v = gv. In absence of noise, we could easily
detect that a degenerate case occurs (in that case,
the rank of Cg̃ is 1), and obtain the exact solution
as g̃u = gu = −c4/c2 = c5/c3 and g̃v = gv =
−c3/c1 = c6/c4. In the presence of noise, even if
we consider that it is impossible to detect that we
are in a degenerate case, the nice property that all
sets of solutions have a unique common solution
ensures that the solution obtained from (26) will
be near this common solution, that is the real one.
Of course, the error between the obtained result
and the real value is directly related to the level
of noise.

On the other hand, estimating the epipolar ge-
ometry through the fundamental matrix in the de-
generate cases leads to very unstable results. Con-
sider for example the case of a planar object. In
that case, any point in the image can be chosen

as epipole. Then, an infinity of vectors f are solu-
tions of system (13). In presence of noise, if it is
impossible to detect that a degenerate case occurs,
any solution may be chosen as the good solution,
which implies that the estimation of the motion
parameters is generally completely wrong. On the
other hand, as explained above, there exists only
one collineation matrix, and its estimation is pos-
sible through systems (26) and (27).

Consider now the case of a pure rotation. The
solution of system (13) should be f = 0. However,
the fundamental matrix is estimated by imposing
the constraint ‖f‖ = 1 since f is computed as a col-
umn of an orthonormal matrix. It is thus impossi-
ble to obtain an estimation near the right solution,
that is ‖f‖ = 0. On the contrary, the solutions
of system (26) and (27) always satisfy the con-
straints ‖x‖ = 1 and ‖h̃‖ = 1 respectively. These
constraints, imposed when performing the SVD
of the measurement matrix, are ensured even in
the degenerate cases. Then, the estimation of the
camera displacement around these singular con-
figurations will be more accurate when performed
from the collineation matrix than from the funda-
mental matrix. As already stated, this is particu-
larly important in visual servoing, since a position-
ing task is achieved when the camera displacement
is null, which corresponds to a null pure rotation.

4.3. The homography matrix

The corresponding matrix of G in the calibrated
domain is the homography matrix H. The trans-
formation between the pixel coordinates p =[

u v 1
]T

and the normalized coordinates m =[
x y 1

]T
of an image point is known to be

p = Am where A is given in (19). The homog-
raphy matrix can be written as a function of the
calibration parameters and of the collineation ma-
trix as follows:

H = A−1GA (32)

Furthermore, the homography matrix can be writ-
ten as a function of the camera displacement [11]:

H = R +
t

d∗
n∗T (33)

where n∗ is the normal to the virtual plane π ex-
pressed in F∗, and d∗ is the distance from C∗
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to π (see Figure 5). From the estimated homog-
raphy matrix, R, td∗ = t/d∗, and n∗ can thus
be directly calculated without any additional es-
timation. To compute these parameters, one of
the algorithms proposed in [11] or [31] can be
used. Unfortunately, in the most general case,
we have two different solutions. If the object is
known to be planar, the indetermination can be
eliminated if an additional information is available
(for example from the normal vector to the virtual
plane π). Otherwise, the indetermination is elim-
inated by considering another reference plane and
by choosing the common solution between the two
pairs [11]. In visual servoing, this has to be done
only once, at the first iteration of the control law,
since the solution the nearest of the previous one
can be chosen for the next iterations.

Finally, the ratio ρ involved in our control
scheme can be directly computed from R, td∗ , and
n∗. Indeed, we have:





ρ =
nT m

n∗T m∗
r if m ∈ π

ρ =
‖ [td∗ ]× Rm∗‖

‖ [td∗ ]× m‖
if m /∈ π

(34)

where the ratio r between distances d and d∗ (see
Figure 5) is given by:

r =
d

d∗
= det(H) = 1 + n∗T Rtd∗ (35)
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Fig. 5. Motion and structure parameters.

If the camera is not perfectly calibrated and Â
is used instead of A, it is again possible to express

the parameters involved in our control scheme.
More precisely, if we consider that the homogra-
phy at infinity can be estimated, and restrict the
computation to the case where the point m used
in the control scheme belongs to π, we obtain:

θ̂ = θ , û =
δAu

‖δAu‖
and ρ̂ = ρ (36)

where δA = Â−1A describes the (unknown) error
on the intrinsic parameters. It must be empha-
sized that rotation angle θ and ratio ρ are com-
puted without error. Our control scheme is thus
particularly robust with respect to calibration er-
rors. As already explained in Section 2, thanks
to the simple above relations, we have been able
in [24, 25] to determine analytical conditions to
ensure the local and global asymptotic stability of
our system in presence of calibration errors.

5. Simulations results

In this section, we compare the accuracy of our
method to standard ones. The simulated objects
are composed of a cloud of 16 points, and, for each
experiment, several objects are randomly built.
The camera displacement is also randomly cho-
sen, and, for each camera displacement, several
random additive noise on image coordinates (with
1 pixel standard deviation) was generated. As al-
ready explained, the three points automatically
selected to define the reference plane π are such
that they maximize the surface of the correspond-
ing triangles in both images. The mean, the stan-
dard deviation and the maximum of the absolute
value of the following errors was then computed
(where the hat refers to the estimated value):

• Rotational error: The distance between the
two rotations R and R̂, which is the shortest
length of the geodesic starting at R and end-
ing at R̂. The shortest length of this geodesic
is the rotation angle θr of the matrix RR̂−1.

• Translational error: The angle θt between the
normalized vectors t/‖t‖ and t̂/‖t̂‖.

As already said, we focused in this paper on lin-
ear estimations since they are the only ones able
to give results at video rate. Since time process-
ing is not critical in simulation, we consider also
in this section the results obtained with the non-
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linear method described in [7, 32]. The results
of the different methods are plotted in the figures
respectively with:

• a triangle for the eight point algorithm using
normalized data (EL) (see Section 3.2.1).

• a square for the motion estimation using the
virtual parallax algorithm (VP) (see Section
3.2.2).

• a circle for the linear homography matrix es-
timation algorithm (HL) (see Section 4.2).

• a diamond for the non-linear algorithm (NL)
described in [7, 32] and initialized with the EL
algorithm results.

The EL and NL algorithms have been tested using
the Fmatrix software developed by Zhang1.

5.1. Accuracy with planar objects

As already explained, our visual servoing scheme
does not necessitate any a priori information
about the 3D model of the considered object. In
man-made environment, it is very common to find
planar or nearly planar surfaces. It is thus im-
portant that the algorithm estimating the camera
displacement provides accurate results when the
considered object is planar, even if it corresponds
to a degenerate case of the epipolar geometry.

We thus consider here objects composed of 16
coplanar points randomly chosen in a square of
30 × 30 cm2. In Figure 6 are given the mean of
the error, its standard deviation and the maxi-
mal error computed over 40000 samples varying
randomly the camera displacement and the struc-
ture of the points in the square. More precisely,
40 planar objects and 100 camera displacements
have been considered, and for each of these con-
figurations, 10 experiments adding random image
noise have been realized. As for the camera orien-
tation, it varies randomly from a nominal position
in front of the plane with a maximal displacement
of ±60◦. The translation of the camera is chosen

such that the points remains in the camera field of
view. The initial distance from the plane is 50 cm.
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Fig. 6. Planar object: rotation and translation error ver-
sus number of points.

As expected, considering a planar object is un-
favourable for the algorithms EL and NL based
on the fundamental matrix estimation. Important
mean errors (18◦ and 40◦ for the rotational and
translational errors) are obtained using these al-
gorithms whatever the number of points. Results
using our HL algorithm are satisfactory (the mean
error is 6◦ for the rotation and 15◦ for the transla-
tion) since the most accurate and stable. Finally,
the VP method gives intermediary results since,
even if the displacement is computed from the
homography, the homography is estimated jointly
with the epipole, which introduces important per-
turbations.
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5.2. Accuracy at the final position

We now consider the case of a small camera dis-
placement. In visual servoing, since this displace-
ment is a priori unknown, it may thus be small,
even for the initial camera position. This is typ-
ically the case for robot stabilization and target
tracking tasks. Furthermore, whatever the initial
camera position, it is obvious that, at convergence
of the visual servoing scheme, the displacement
has to be as small as possible. To preserve the
stability of the control law, it is thus extremely
important that the algorithm used to estimate
the camera displacement provides an accurate and
stable result in the case where R = I and t = 0,
even if the epipolar geometry is degenerate (since
the epipole is undefined in the image).
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Fig. 7. Rotation error versus number of points when the
camera is at its final position.

For the simulation, we set R = I, t = 0 and
use 100 objects composed of 16 points randomly
chosen in a cube of 30× 30× 30 cm3. The results
obtained for 10000 tests (100 tests with different
noise for each object) are shown in Figure 7. As
expected, the HL algorithm produces more accu-
rate results than the VP algorithm, since the ho-
mography is not estimated jointly to the epipole.
As expected also, the EL and NL algorithms are
less accurate than the HL and VP algorithms, es-
pecially when the number of considered points is

small. These results confirm that, in the singular
cases, the use of an homography matrix is prefer-
able to obtain the motion parameters.

5.3. Accuracy with a rotating camera

In this simulation, we consider a stationary cam-
era that performs a pure rotation of 10◦ around a
random axis (10000 tests corresponding to 20 ob-
jects and 50 different axes of rotation have been
done). As can be seen in Figure 8, we obtain very
similar results to the previous simulation and the
HL algorithm produces again the bests results in
this degenerate case of the epipolar geometry.
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Fig. 8. Pure rotation of the camera: error versus number
of points

5.4. Accuracy with random camera displacement

Figure 9 shows the results obtained with random
generic displacements (once again, 10000 samples
have been done to deal with 20 objects and 50
displacements). In that case, the NL algorithm
produces, as expected, the best results, but we
can note that those obtained using the HL algo-
rithm are satisfactory in regard to those obtained
using the EL method (since they are very close).
Finally, the VP algorithm gives the worst results,
since the joint estimation of the epipole and of the
homography matrix induces perturbations on the
camera motion estimation.
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We can remark that, for all methods, the errors
are most important in this experiment than in the
previous ones. This is due to the fact that the
random camera displacement may imply that the
object is very small in the image, which of course
induces less accurate results.
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Fig. 9. Generic displacement: results vs number of points

To conclude, we recall that the choice of the
three reference points is important in our HL
method (as already explained, they are selected to
maximize the area of the corresponding triangles
in both images). The quality of the results when
these points are matched with large imprecision
can be very bad. However, in all the presented
simulation results, the variance of the noise on all
points was of 1 pixel, which means that the algo-
rithm is accurate even in presence of noisy images.
Finally, as it will be explained below, dealing with
outliers (mismatched points) was not in the scope
of this paper.

6. Experimental results

6.1. Camera displacement estimation using a
real scene

We now consider a real scene and a calibrated
eye-in-hand system. In the reported experiment,
the camera displacement has been set to: t =[

14 6 −18
]T

cm and r =
[

2.1 −3.1 −0.7
]T

dg.
The points (matched using the Image Matching
software1, developed by Zhang) in both images2

were numbered from 1 to 28 (see Figure 10a and
Figure 10b).

(a) first image (b) second image
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Fig. 10. Real scene: results versus number of points

The first 3 points were chosen by hand as ref-
erence points for the change of projective coor-
dinates. The errors θr and θt versus number of
points are depicted in Figure 10c and Figure 10d
respectively. On the whole, the NL algorithm
gives better results than the EL algorithm (sur-
prisingly except for 13 points). According to
the simulation results, the HL algorithm produces
more accurate results than the EL algorithm. Fi-
nally, it is quite surprising that the HL method
gives more accurate results than the NL method.
This is due to the fact that the camera displace-
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ment is not important in regard of the dimension
of the scene, which means that the considered ex-
ample is not far from a degenerate case of the
epipolar geometry.

6.2. 2 1/2 D Visual servoing results

The HL method has been integrated in the visual
servoing scheme described in Section 2 and tested
on a seven d.o.f. industrial robot Mitsubishi PA10
(at EDF DER Chatou) and a six d.o.f. Cartesian
robot Afma (at IRISA). As far as camera calibra-
tion is concerned, we have used the pixel and focal
lengths given by the constructor in order to com-
pute the image coordinates u and v from their
measured values (in pixels) in the image. The
center of the image has been used for the prin-
cipal point. The object was a black board with
twelve white marks on three parallel planes (see
Figure 11). The extracted visual features are the
image coordinates of the center of gravity of each
mark. With such simple images, the control loop
can easily be carried out at video rate.

For large camera displacements, such as the
ones considered in the experiments, point match-
ing between initial and reference images is a diffi-
cult computer vision problem. This problem has
not been considered here because of the simplic-
ity of the considered object. Furthermore, this
matching has to be done only once, just before
the beginning of the visual servoing, where real
time issue is not needed. Finally, in the robotics
applications we are working on, this matching pro-
cess can be solved thanks to the help of a human
operator.

In the following experiments, the NL method
has not been tested since it is not able to provide
results at video rate. The EL method has also not
been implemented. From the simulation results
described in the previous section, very unstable
results can be expected when the epipole is unde-
fined, which unfortunately occurs when the cam-
era reaches its desired position. For this reason,
only the VP and HL methods were tested. Fi-
nally, in order to prove the validity of the homog-
raphy estimation, even in non optimal conditions,
the three reference points were not taken spread

in the image (see Figure 11a where a square has
been superimposed around each reference point).
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Fig. 11. Rotational camera displacement: results versus
iteration number
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Fig. 12. Translational camera displacement results versus
iteration number

6.2.1. Pure Rotation. The results of the 2 1/2
D visual servoing, obtained when the camera dis-
placement were a pure rotation of -30 dg around
the z axis, are given in Figure 11. The HL
and VP algorithms produce good results even
if the epipole is undefined all along the experi-
ment. However, it can be observed that the rota-
tion (Figure 11f) and the scaled translation (Fig-

ure 11h) estimated using the HL algorithm are
less noisy than the ones estimated using the VP
algorithm (see Figure 11e and Figure 11g). This
implies a more stable control law (see Figure 11c
and Figure 11d), and demonstrates the interest of
our method with respect to classical ones.

6.2.2. Pure Translation. In this second experi-
ment, the camera displacement was a pure trans-
lation such that the epipole coincides with a ref-
erence point in the image (e = p1). The obtained
results are displayed on Figure 12. As can be seen
on the plots, from iteration 0 to 5, the VP algo-
rithm is very unstable since it is near its singu-
larity, while the HL algorithm is always more ac-
curate and stable. Once again, we can note that
the estimation of the parameters involved in our
control scheme of course reflects on the computed
control law, which is thus more stable and satis-
factory using the HL method.

6.2.3. Generic camera displacement. In this
last experiment (see Figure 13), a generic camera
displacement is performed: t =

[
−1.3 55.2 4.1

]T

cm and r =
[

36.2 −17.2 48.4
]T

dg. Once again
and according to the simulation results, the HL
algorithm produces more stable results than the
VP algorithm (see the output control law in Fig-
ure 13d and in Figure 13c respectively).
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Fig. 13. Generic camera displacement results versus iter-
ation number
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From the initial to final camera poses, the es-
timated rotational displacement using the HL al-
gorithm is r =

[
34.8 −14.9 48.3

]T
dg. Similarly,

the estimated direction of translation is t/‖t‖ =[
−0.04 0.99 0.04

]T
(while the real direction of

translation was t/‖t‖ =
[
−0.02 0.99 0.07

]T
).

The algorithm is thus accurate (maximal rota-
tional error is around 2◦, as well as the angle error
on the direction of translation) despite the coarse
calibration which has been used.
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Fig. 14. Another experiment with large displacement

We finally present on Figure 14 the results ob-
tained using the HL algorithm when the three ref-
erence points are taken spread in the image (see
Figure 14a). The images corresponding to the de-
sired and initial camera position are given in Fig-
ure 14a and 14b respectively. The points trajec-

tory in the image recorded during the experiment
are plotted on Figure 14e. We can note that all
points remain in the camera field of view (which
is not the case using classical position-based and
image-based approaches [25]). Furthermore, the
trajectory of the point selected as input of the con-
trol scheme is easily identified since it looks like
a straight line in the image. Our scheme is thus
particularly robust with respect to modelling er-
rors since it is not disturbed by the use of a coarse
camera calibration and a coarse approximation of
Z∗ (in the experiment, Z∗ has been set to 50 cm
while its real value is equal to 60 cm). Finally, we
can note on Figure 14c and 14d the improvement
on the stability of the control law brought by an
adequate choice of the 3 reference points used to
define the virtual plane π.
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Fig. 15. Results obtained using a planar object
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Numerous other experiments are detailed in [24,
25]. We refer an interested reader to these ref-
erences where it is shown that the convergence
domain of the 2 1/2 D visual servoing is larger
than for the classical position-based and image-
based schemes. Important camera and hand-eye
calibration errors are also considered.

6.2.4. Experiment on a planar object. We now
present the results obtained using a planar object
(see Figure 15 where the 12 points now lies on a
plane). We recall that our method, as the others,
is theoretically unefficient to deal with this case
where the epipolar geometry is degenerate. How-
ever, as already explained, as soon as noise exists
in the image measurements, our method is able to
provide satisfactory results. This is demonstrated
on Figure 15c and 15d where the components of
the computed control law are depicted. We can
note that, even if the level of noise is very low (ap-
proximatively 0.1 pixels with so simple images),
the estimation of the parameters involved in our
control scheme is as stable as for a non planar ob-
ject, since it is difficult to find any difference in
the level of noise of the control law between this
experiment and the previous one.

7. Conclusion

The visual servoing scheme presented in this paper
has many advantages over the standard methods.
The most important one is that our scheme does
not need any 3D model of the observed object.
2 1/2 visual servoing presents also very interesting
decoupling and stability properties, and it is par-
ticularly robust with respect to modelling errors.
The control scheme is designed from an Euclidean
reconstruction which can be obtained either from
the essential matrix or from an homography ma-
trix. However, we have shown and confirmed by
simulation and experimental results that recov-
ering the camera displacement from the homog-
raphy matrix gives more stable results when the
camera comes near its desired position. Future
work will be devoted to the application of 2 1/2 D
visual servoing on real images, where image pro-
cessing and features matching have to be consid-
ered carefully.
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Appendix

The j-row of the measurement matrix Ch̃ (see
(26)) can be written in function of the image
points coordinates as follows:

c1 = wiwjvku∗
k(u∗

jv
∗
i − u∗

i v
∗
j ) +

wiwkvju
∗
j (u

∗
i v

∗
k − u∗

kv∗
i ) +

wjwkviu
∗
i (u

∗
kv∗

j − u∗
jv

∗
k)

c2 = wiwjukv∗
k(u∗

i v
∗
j − u∗

jv
∗
i ) +

wiwkujv
∗
j (u∗

kv∗
i − u∗

i v
∗
k) +

wjwkuiv
∗
i (u∗

jv
∗
k − u∗

kv∗
j )

c3 = vivkwju
∗
j (u

∗
i w

∗
k − u∗

kw∗
i ) +

vivjwku∗
k(u∗

jw
∗
i − u∗

i w
∗
j ) +

vjvkwiu
∗
i (u

∗
kw∗

j − u∗
jw

∗
k)

c4 = uiukwjv
∗
j (v∗

i w∗
k − v∗

kw∗
i ) +

uiujwkv∗
k(v∗

j w∗
i − v∗

i w∗
j ) +

ujukwiv
∗
i (v∗

kw∗
j − v∗

j w∗
k)

c5 = vjvkuiw
∗
i (u∗

jw
∗
k − u∗

kw∗
j ) +

vivkujw
∗
j (u∗

kw∗
i − u∗

i w
∗
k) +

vivjukw∗
k(u∗

i w
∗
j − u∗

jw
∗
i )

c6 = ujukviw
∗
i (v∗

j w∗
k − v∗

kw∗
j ) +

uiukvjw
∗
j (v∗

kw∗
i − v∗

i w∗
k) +

uiujvkw∗
k(v∗

i w∗
j − v∗

j w∗
i )

c7 = uivkwj(u
∗
kv∗

j w∗
i − u∗

jv
∗
i w∗

k) +
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∗
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Let us now suppose that two points are related
by a collineation (which is the case for a planar
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object or when the camera displacement is a pure
rotation). In that case, we have:




u
v
w


 =




gu 0 0
0 gv 0
0 0 gw






u∗

v∗

w∗


 (37)

We thus have u∗ = u/gu, v∗ = v/gv, w∗ = w/gw,
from which we can deduce:.

c1 = (wiwjvkuk(ujvi − uivj) +

wiwkvjuj(uivk − ukvi) +

wjwkviui(ukvj − ujvk))/(g2
ugv)

c2 = (wiwjukvk(uivj − ujvi) +

wiwkujvj(ukvi − uivk) +

wjwkuivi(ujvk − ukvj))/(g
2
vgu)

c3 = (vivkwjuj(uiwk − ukwi) +

vivjwkuk(ujwi − uiwj) +

vjvkwiui(ukwj − ujwk))/(g2
ugw)

c4 = (uiukwjvj(viwk − vkwi) +

uiujwkvk(vjwi − viwj) +

ujukwivi(vkwj − vjwk))/(g2
vgw)

c5 = (vjvkuiwi(ujwk − ukwj) +

vivkujwj(ukwi − uiwk) +

vivjukwk(uiwj − ujwi))/(g
2
wgu)

c6 = (ujukviwi(vjwk − vkwj) +

uiukvjwj(vkwi − viwk) +

uiujvkwk(viwj − vjwi))/(g
2
wgv)

c7 = (uivkwj(ukvjwi − ujviwk) +

ukviwj(ujvkwi − uivjwk) +

uivjwk(ukviwj − ujvkwi) +

ujviwk(uivkwj − ukvjwi) +

ukvjwi(ujviwk − uivkwj) +

ujvkwi(uivjwk − ukviwj))/(gugvgw)

Posing c′1 = c1(g
2
ugv), c′2 = c2(g

2
vgv), c′3 =

c3(g
2
ugw), c′4 = c4(g

2
vgw), c′5 = c5(g

2
wgu), c′6 =

c6(g
2
wgv) and c′7 = c7(gugvgw), and expanding the

equations, we obtain after some tedious computa-
tions:

c′1 = α , c′2 = −α , c′3 = −α ,
c′4 = α , c′5 = α , c′6 = −α ,
c′7 = 0

where:

α = ujukvivkwiwj − uiukvjvkwiwj +

uiujvjvkwiwk − ujukvivjwiwk +

uiukvivjwjwk − uiujvivkwjwk

We can note that α 6= 0, except when the three
points involved in (26) are collinear.

Notes

1. available on http://www.inria.fr/robotvis/personnel/
zzhang/zzhang-eng.html

2. provided by the Inria Syntim project (http://www-
syntim.inria.fr/syntim/analyse/paires-eng.html)
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