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Abstract

In this paper, we describe an efficient method to impose the constraints existing between the

collineations between images which can be computed from a sequence of views of a planar

structure. These constraints are usually not taken into account by multi-view techniques in

order not to increase the computational complexity of the algorithms. However, imposing the

constraints is very useful since it allows a reduction of geometric errors in the reprojected features

and provides a consistent set of collineations which can be used for several applications such as

mosaicing, reconstruction and self-calibration. In order to show the validity of our approach, this

paper focus on self-calibration from unknown planar structures proposing a method exploiting

the consistent set of collineations. Our method can deal with an arbitrary number of views and

an arbitrary number of planes and varying camera internal parameters. However, for simplicity

this papers will only discuss the case with one plane in several views. The results obtained with

synthetic and real data are very accurate and stable even when using only few images.
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1 Introduction

The particular geometry of features lying on planes is often the reason for the inaccuracy

of many computer vision applications (structure from motion, self-calibration) if it is not

taken explicitly into account in the algorithms. Introducing some knowledge about the

coplanarity of the features and about their structure (metric or topological) can improve



the quality of the estimates [20]. However, the only prior geometric knowledge on the

features that will be used here is their coplanarity. Two views of a plane are related by

a collineation. Using multiple views of a plane we obtain a set of collineations which

are not independent. If there are multiple planes in the scene there will be a set of

collineations for each plane and again some constraints between the different sets. In

order to avoid solving non-linear optimisation problems, the constraints existing within

a set of collineation and between sets have often been neglected. However, these multi-

view constraints can be used to improve the estimation of the collineations matrices as

in [24], where multiple planes (≥ 2) are supposed to be viewed in the images. In this

paper we analyse the constraints existing between a set of collineations induced by a

simple plane in the image but it is very easy to extend our analysis to the case of multiple

planes. Imposing the constraint is useful since it allows the reduction of the geometric

error in the reprojected features and provides a consistent set of collineations which can

be used for several applications as mosaicing, reconstruction and self-calibration. In

this paper we will focus on camera self-calibration. Camera self-calibration from views

of a generic scene has been widely investigated [13] [22] [5] [17] [18] [8]. Depending

on the a priori information provided the self-calibration algorithms can be classified as

follows. Algorithms that use some knowledge of the observed scene: identifiable targets of

known shape [14], metric structure of planes [19] [25]. Algorithms that exploit particular

camera motions: translating camera [16] or rotating camera [6]. Algorithms that use

some a priori knowledge on the camera parameters: some fixed camera parameters (i.e.

skew zero, unit ratio ...), varying camera parameters [17] [15]. Camera self-calibration

from planar scenes with known metric structure has been investigated in several papers.

However, it is interesting to develop flexible techniques which do not need any a priori



knowledge about the camera motion as in [6] or metric knowledge of the planar scene. A

method for self-calibrating a camera from views of planar scenes without knowing their

metric structure was proposed in [23]. In this work Triggs developed a self-calibration

technique based on some constraints involving the absolute quadric and the scene-plane

to image-plane collineations. However, in practice it is not possible to estimate these

collineations without knowing the metric structure of the plane. Only the collineations

with respect to a reference view (a key image) can be used to self-calibrate a camera with

constant internal parameters. As noticed by Triggs, inaccurate measurements or poor

conditioning in the key image contribute to all the collineations reducing the numerical

accuracy or the stability of the method. In order to average the uncertainty over all

collineations, Triggs proposed, in an extended version of [23], a one-step collineation

factorisation method analogous to factorisation-based projective structure and motion

[21] [9]. However, the factorisation proposed by Triggs is not used in [23] as it turns

out to give slightly worse results in practice. In this paper, we propose to impose the

constraints between collineation using a different iterative method proposed in [10]. By

imposing the constraints, we obtain accurate self-calibration from planar scenes with

unknown metric structure. We do not use any key image but all the images are treated

equally averaging the uncertainty over all of them. Furthermore, our method can be

applied for the self-calibration of a camera with varying focal length [11].

2 Two-view geometry

In this section we describe the relationship between two views of a planar structure.

Each camera performs a perspective projection of a point x ∈ P3 (with homogeneous

coordinates x = (X,Y, Z, 1)) to an image point p ∈ P2 (with coordinates p = (u, v, 1))

measured in pixels: p ∝ K [R t] x, where R and t represent the displacement between



frame F attached to the camera and an absolute coordinate frame F0, and K is a non-

singular (3×3) upper triangular matrix containing the intrinsic parameters of the camera.

2.1 The collineation matrix in projective space

Let Fi and Fj be two frames attached respectively to the image Ii and Ij. The two views

of a planar object are related by a collineation matrix in projective space. The image

coordinates pik of the point Pk in the image Ii can be obtained from the coordinates pjk

of Pk in image Ij:

pik ∝ Gijpjk (1)

where the collineation matrix Gij is a (3 × 3) matrix defined up to scalar factor which

can be written as: Gij ∝ KiHijK
−1

j where Hij is the corresponding collineation matrix

in the Euclidean space. In this paper we will use the term “E-collineation” to indicate a

collineation expressed in Euclidean space.

2.2 The collineation matrix in Euclidean space

The E-collineation matrix can be written as a function of the camera displacement and

the normal to the plane [2]: Hij = Rij +
tij n>

j

dj
where Rij and tij are respectively the

rotation and the translation between the frames Fi and Fj, nj is the normal to the plane π

expressed in the frame Fj and dj is the distance of the plane π from the origin of the frame

Fj. The matrix Hij can be estimated fromGij if we know the camera internal parameters

of the two cameras: Hij ∝ K−1

i GijKj. Three important properties of the E-collineation

matrix will be extended to the multi-view geometry in the next section. E-collineation

matrices are not defined up to a scale factor. If the E-collineation is multiplied by a scalar

γ (H
′

= γH), this scalar can be easily recovered. If svd(H
′

) = (σ1, σ2, σ3) are the singular

values of H
′

in decreasing order, σ1 ≥ σ2 ≥ σ3 > 0, then γ is the median singular value of



H
′

: γ = median(svd(H
′

)) = σ2. Indeed, the matrix H has a unit singular value [26] and

this property can be used to normalise the E-collineation matrix. It is easy to show [12]

that the E-collineation matrix satisfies the following equation ∀k > 0 (where [ni]× and

[nj]× are the skew symmetric matrices associated with vectors ni and nj which represent

the normal to the plane expressed respectively in the image frame Fi and Fj):

[ni]
k

×
HT

ji = Hij [nj]
k

×
(2)

Equation (2) provides useful constraints. If k = 1, the matrix [ni]×H
T
ji = [ni]×Rij

has similar properties to the essential matrix (i.e. E = [t]
×
R). Indeed, this matrix

has two equal singular values and one equal to zero. This means two constraints each E-

collineation on the camera internal parameters [7] which can be used for the self-calibration

as in [15]. If k = 2, knowing that [n]2x = nn
T − I, equation (2) can be written nin

T
i H

T
ji −

Hijnjn
T
j = H

T
ji −Hij and provides equations that will be used to compute ni and nj. A

very important equation can be obtained from equation (2) for k = 1 and will be used to

compute ni and nj: [ni]× = Hij [nj]×H
T
ij. Indeed, since det(M)M [v]

×
MT =

[
M−>v

]
×

then:

ni = Qijnj (3)

where Qij = det(Hij) H
−>
ij .

3 Multi-view geometry of planes

In this section we describe the relationships between several views of a planar structure.

Since a super matrix of 2D collineations among m views has rank 3, we will show how to

enforce the rank property in an iterative procedure. The properties of the corresponding

super matrix of 2D collineations provide the necessary constraint for the self-calibration

of the camera internal parameters. In what follows we will describe the case when only



one planar structure is used but the extension to more than one plane is straightforward.

3.1 The super-collineation matrix

If m images of an unknown planar structure are available, it is possible to compute

m(m− 1) collineations (m collineations are always equal to the identity matrix). Let us

define the super-collineation matrix as follows:

G =




G11 · · · G1m

...
. . .

...

Gm1 · · · Gmm




(4)

with dim(G) = (3m, 3m) and rank(G) = 3. The rank ofG can not be less than three since

Gii = I3 i ∈ {1, 2, 3, ...,m}, and cannot be more than three since each row of the matrix

can be obtained from a linear combination of three others rows: Gij = GikGkj ∀i, j, k ∈

{1, 2, 3, ...,m}. This is a very strong constraint which is generally never imposed. Indeed,

bundle adjustment would require a complex nonlinear minimisation algorithm over all the

images. In order to impose the constraints, Triggs proposed, in an extended version of [23],

a one-step collineation factorisation method analogous to factorisation-based projective

structure and motion [21]. It consists in using the SVD decomposition in order to factorize

the super-collineation matrix as follows: G = (G>
10
,G>

20
, · · · ,G>

m0
)>(G01,G02, · · · ,G0m)

where Gk0 is the collineation matrix between image Ik and a reference frame F0 attached

to the plane. The factorisation proposed by Triggs has not been used in [23] since it gives

worse results in practice. Thus, we propose to impose the constraints with an iterative

but efficient algorithm. The constraints on all collineation matrices can be summarised

by the following equation:
G2 = m G (5)



Then, matrix G has 3 nonzero equal eigenvalues λ1 = λ2 = λ3 = m and 3(m − 1) null

eigenvalues λ4 = λ5 = ... = λ3m = 0. If we can impose the constraint G
2 = m G (with

Gii = I3 i = 1, 2, 3, ...,m) then this is in fact equivalent to imposing the constraints

Gij = GikGkj. In projective space, collineations matrices are defined up to a scalar

factor. Thus, G̃ij = λijGij and Gij represents the same collineation. As a consequence

super-collineation matrices are defined up to a diagonal similarity (i.e. G̃ = DGD−1 and

G represents the same super-collineation, where D is a diagonal matrix). The super-

collineation matrix can be normalised by choosing λij =
3

√
det(G̃ij). As a consequence

det(Gij) = det

(
1

λij

G̃ij

)
= 1.

3.2 Imposing the constraints

In order to impose the constraints, we exploit the properties of the super-collineation

matrix. Let pij be the j-th point (j = {1, 2, 3, ..., n}) of the i-th image (i = {1, 2, 3, ...,m}).

The j-th point in all the images can be represented by the vector of dimension (3m, 1)

(which we will call a super-point): pj = (p1j,p2j, · · · ,pmj). Generalising equation (1) we

obtain:
Γjpj = Gpj (6)

where Γj = diag(γ1jI3, γ2jI3, ..., γmjI3) is a diagonal matrix relative to the set of points j.

Then, multiplying both sides of equation (6) by G we have: GΓjpj = G2pj = mGpj =

mΓjpj. The vector Γjpj (representing the homogeneous coordinates of the point j in

all the images) is an eigenvector of G corresponding to the eigenvalue m. As a conse-

quence any vector Γjpj can be obtained as a linear combination of the eigenvectors of

G corresponding to the eigenvalue λ = m: Γjpj = α1x1 + α2x2 + α3x3. The matrix

G can always be diagonalised and thus three linearly independent eigenvectors always

exist, i.e., ∃X : X−1GX = diag(λ1, λ2, ..., λ3m). The columns of the matrix X are in fact



eigenvectors of G. Since X is nonsingular, the eigenvectors of G are linearly independent

and span the space R3m. That means that an initial estimation p̂ ∈ R3m of the super-

point p can be written as Γp̂ = α1x1 + α2x2 + α3x3 + ... + α3mx3m. The real vector

Γp is an eigenvector of G corresponding to the largest eigenvalue λ = m. If we have a

perfect estimate of G, we can use a well-known algorithm to find an eigenvector of G

starting from Γp̂. In practice, the real super-collineation matrix G is unknown and we

must use an approximation Ĝ estimated from the points measured in the images. Thus,

the algorithm we use is similar to the previous one but the approximation Ĝ is updated

at each iteration. We start with a set of n points p̂j (j = 1, 2, 3, ..., n) and compute the

super-collineation matrix Ĝ solving independently the linear problem of estimating each

block Ĝij from equation (1). It is not necessary that all the points are visible in all the

images. Then, we compute a new set of super-points which is a better estimate of the

true image points thanks to reprojections averaging. The better is the initial estimate of

G the faster the algorithm converges and the more accurate is the result. Even if we do

not formally prove here that the algorithm do not diverge, we did not observe any large

drift in the experiments. Furthermore, we compared our method with bundle adjustment.

Experiments on simulated data showed that the results given by our algorithm are also

a solution of the bundle adjustment problem. Indeed, the algorithm produces consistent

points and homographies exactly as a bundle adjustement. A detailed desccription of the

algorithm and of the comparison with bundle adjustment can be found in [12].

3.3 The super-E-collineation matrix

Let us define the super-E-collineation matrix in the Euclidean space as:



H =




H11 · · · H1m

...
. . .

...

Hm1 · · · Hmm




(7)

with dim(H) = (3m, 3m) and rank(H) = 3. The super-E-collineation matrix can be

obtained from the super-collineation matrix and the camera parameters: H = K−1GK

where (dim(K) = (3m, 3m) and rank(K) = 3m) and K = diag(K1,K2, · · · ,Kn) is the

block diagonal matrix containing the internal parameters of all the cameras. It should

be noticed that if the constraint G2 = mG was imposed, then the constraint H2 =

mH is automatically imposed which means that the following constraints are satisfied:

Hij = HikHkj. Unlike the super-collineation matrix, the super-E-collineation matrix is

not defined up to a diagonal similarity. Indeed, each E-collineation matrix must have

the median singular value equal to 1. If σij (which is generally different from 1) denotes

the median singular value of the estimated matrix H̃ij we can build the following matrix

which contain all the coefficients of normalisation: D = diag(σ11I3, σ12I3, ..., σ1mI3). The

super E-collineation matrix is thus normalised as follows: H = DH̃D−1. After this

normalisation all the E-collineation matrices Hij in H have their median singular value

equal to 1. From this equation we can easily see that the constraint H2 = mH holds.

Even in the presence of noise, normalising H will conserve the rank constraint of the

matrix since it is a similarity transformation.

3.4 Decomposition of the super-E-collineation matrix

To our knowledge, existing methods for the decomposition of E-collineations (calibrated

homographies) are given in [2] [26] for image pairs. In our case, the super-E-collineation

matrix cannot be decomposed using these methods. Thus, we propose a method which



take into account multiple views of a plane without using a key image. After normali-

sation, the E-collineation matrix can be decomposed as: H = R + TNT where R is a

(3m, 3m) symmetric matrix with rank(R) = 3 and such thatR2 = mR. As a consequence

not only are the three largest eigenvalues λ1 = λ2 = λ3 = m but also the three largest

singular values are σ1 = σ2 = σ3 = m. The (3m,m) matrix T contains the translations

while the (3m,m) matrix N contains the normals to the plane. As already mentioned,

in [2] and [26] are presented two different methods for decomposing the E-collineation

matrix, computed from two views of a planar structure. In general, there are two pos-

sible solutions but the ambiguity can be resolved by adding more images. In our case,

the normals to the plane can be extracted from the super-E-collineation matrix. Setting

Q =WHTW−1 whereW = diag(I3, det(H21)I3, ..., det(Hm1)I3) and dim(Q) = (3m, 3m)

and rank(Q) = 3. Matrix Q has similar properties to the matrixH, for example, it has an

eigenvalue λ = m of multiplicity three. The vector n is an eigenvector of Q corresponding

to the eigenvalue λ = m:

Qn = mn (8)

where n = [nT
1
nT

2
...nT

m]
T . The vector can be written as a linear combination of the

eigenvectors n = x v1+y v2+z v3 = Vw, where w = (x, y, z) is a vector containing three

unknowns and V = (v1,v2,v3) is a known matrix. Imposing the constraint ‖nk‖ = 1 we

obtain: Viww
TVT

i H
T
ji−HijVjww

TVT
j = H

T
ji−Hij from which is possible to compute the

unknown matrix wwT and then, by singular values decomposition, the original unknown

which is w. Once w has been found, the normals to the plane are extracted from H

and knowing that RN = NUm (where Um is a m × m matrix full of ones) we find:

T = HN−U3mN and R = H(NNT − I3m) +N
TU3mN.



4 Camera self-calibration

The super-E-collineation can of course be used in many applications. In this section we

use the properties of the set of E-collineation matrices to self-calibrate the cameras. It

should be noticed that we avoid the use of a bundle adjustment technique to impose

the rank 3 constraint on the super-E-collineation (as explained in section 3) and thus

we considerably simplify the algorithm. In this case, the only unknowns are the camera

internal parameters. Each independent E-collineation will provide us two constraints

on the parameters according to equation (2). Indeed, if σI
ij and σII

ij are the two non-

zero singular values of the matrix [ni]×H
T
ji our self-calibration method is based on the

minimisation of the following cost function proposed in [4] and [15]:

C =
m∑

i=1

m∑

j=1

σI
ij − σII

ij

σI
ij

(9)

Even if our cost funtion is based on the equality of two singular values, it must be noticed

that the singular values used in [4] and [15] come from the essential matrix while the

singular values we use to compute C come from matrix [ni]×H
T
ji. It has been proved in

[4] that the constraint σI
ij = σII

ij is equivalent to impose two constraints on the camera

internal parameters. Thus, each independent E-collineation can be used to compute the

matrix [ni]×H
T
ji and will provide us two constraints on the parameters. Then, with

constant camera parameters, we need a minimum of: 3 independent E-collineations (4

images) to recover the focal length and the principal point supposing r = ku/kv = 1 and

θ = π/2; 4 independent E-collineations (5 images) to recover all the parameters. If the

camera parameters are varying (we fix θ = π/2) we need a minimum of: 3 independent

E-collineations (4 images) to recover the 4 different focal lengths (supposing the ratio r =



ku/kv and the principal point approximatively known); 4 independent E-collineations (5

images) to recover the 5 different focal lengths and the fixed ratio (with the principal point

approximatively known); 6 independent E-collineation matrices (7 images) to recover the 7

different focal lengths, the ratio and the the principal point. Our self-calibration algorithm

is the following:

1. Match corresponding points in m images of a planar structure;

2. Compute the super-collineation imposing the rank 3 constraint using the algorithm

described in Section 3.1;

3. Using an initial guess of the camera parameters compute the normalised super-E-

collineation matrix as described in Section 3.2;

4. Decompose the super-E-collineation matrix and find the normal to the plane as

described in Section 3.3;

5. Compute a new set of camera parameters which minimise the cost function given

in Section 3.4 and go to step 3.

5 Experiments

The self-calibration algorithm has been tested on real images. The results obtained with

a calibration grid were compared with the standard Faugeras-Toscani method [3]. A

detailed desccription of the experiments can be found in [12].

5.1 Sequence with constant camera parameters

A sequence (26 images of dimension (640×480)) of a calibration grid was taken using a Fuji

MX700 camera with a 7mm lens. Table 1 gives the results for the following experiments.

Non-planar calibration: the mean and the standard deviation on 26 images of the grid



calibrated with the standard Faugeras-Toscani method initialised with the DLT linear

method [1]. Planar self-calibration: the mean and the standard deviation on 50 tests

using m images (m = 6,8,10) randomly chosen between the 26 images of the grid. The

same tests are repeated using the right plane alone, the left plane alone and then again

with r = kv/ku and θ fixed to nominal values. The results are very good and agree

with the simulations presented in [10]. The angle of rotation between the images of the

sequence can be greater than 60◦ which has in general the effect to improve the results.

However, this is not always true since the planes can be very close to the optical center

of the camera and in this case the estimation of the collineations is not accurate. The

calibration obtained using the right plane is very similar to the calibration obtained using

the left plane. As we expected the accuracy decreases as we decrease the number of

images but the worst result (obtained using only 6 images of the grid) is only an error of

2% on the focal length. The number of iteration necessary to converge obviously depends

on the initialisation of the algorithm. The starting point was f(0) = 1000, u0(0) = 250

and v0(0) = 250. The constraints on the super-collineation matrix are imposed after 4

iterations and the maximal number of iterations for the minimisation of the cost function

was set to 300.

5.2 Sequence with variable camera parameters

In order to test our self-calibration technique with varying camera parameters, the ratio

ku/kv is fixed to one and the principal point is supposed to be in the center of the image.

Thus, the unknowns are the focal lengths. A new set of 10 images of the grid was taken

with a zooming camera. The camera was calibrated (in order to have a ground truth)

with the standard Faugeras-Toscani method using the 10 images of the sequence of the



calibration grid. The obtained focal lengths are given in Table 2. The results obtained by

our self-calibration algorithm using the left plane of the calibration grid (similar results

have been obtained using the right plane) are summarised in Table 2. The starting focal

length was f0 = 1000 for all the unknown fi. Considering that in our self-calibration

algorithm the principal point was supposed to be in the center of the image, the results

are satisfactory and the 3D reconstruction of the grid can be done with sufficient accuracy.

calibration method f r θ u v

DLT linear 685 ± 3 1.0005 ± 0.0033 90.00 ± 0.14 322 ± 5 229 ± 4

Faugeras-Toscani 685 ± 3 1.0003 ± 0.0022 90.00 ± 0.16 322 ± 5 229 ± 4

right plane (10 im) 680 ± 8 0.9976 ± 0.0088 89.23 ± 0.59 318 ± 8 230 ± 8

left plane (10 im) 680 ± 6 0.9943 ± 0.0058 89.89 ± 0.30 320 ± 7 232 ± 4

right plane ( 8 im) 681 ± 12 0.9950 ± 0.0105 89.21 ± 0.80 315 ± 11 232 ± 9

left plane ( 8 im) 678 ± 12 0.9969 ± 0.0075 90.06 ± 0.24 327 ± 14 233 ± 3

right plane ( 6 im) 686 ± 13 0.9891 ± 0.0126 89.63 ± 0.69 312 ± 18 231 ± 11

left plane ( 6 im) 685 ± 10 0.9886 ± 0.0147 89.80 ± 0.59 339 ± 18 232 ± 7

Faugeras-Toscani 685 ± 3 1 ± 0 90 ± 0 322 ± 6 229 ± 4

right plane (10 im) 679 ± 6 1 ± 0 90 ± 0 318 ± 5 224 ± 8

left plane (10 im) 675 ± 6 1 ± 0 90 ± 0 325 ± 4 232 ± 4

right plane ( 8 im) 687 ± 6 1 ± 0 90 ± 0 323 ± 3 231 ± 6

left plane ( 8 im) 676 ± 4 1 ± 0 90 ± 0 343 ± 27 231 ± 12

right plane ( 6 im) 676 ± 8 1 ± 0 90 ± 0 314 ± 9 227 ± 5

left plane ( 6 im) 677 ± 18 1 ± 0 90 ± 0 327 ± 34 230 ± 31

Table 1: Results using digital images of the grid (statistics on 50 tests)



f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Faugeras-Toscani 1407 1835 1195 1492 1337 1158 985 1534 1845 1839

proposed method 1491 1950 1212 1472 1393 1233 1012 1609 1929 1905

relative error -6 % -6 % -1 % 1 % -4 % -6 % -3 % -5 % -5 % -4 %

Table 2: Self-calibration of the focal lengths with a zooming camera

6 Conclusion

In this paper we presented an efficient technique to impose the constraints existing within

a set of collineation matrices computed from multiple views of a planar structure. The

obtained set of collineations can be used for several applications such mosaicing, recon-

struction and self-calibration from planes. In this paper we focused on self-calibration

proposing a new method which does not need any a priori knowledge of the metric struc-

ture of the plane. The method was tested with real images and the obtained results are

very good. The method can be improved by imposing further constraints in order to

obtain not only a consistent set of collineations but also a consistent set of E-collineation

matrices. The method can also be improved using a probabilistic model of noise.
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