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Abstract— In this paper, several vision-based robot control
methods are classified following an analogy with well known min-
imization methods. Comparing the rate of convergence between
minimization algorithms helps us to understand the difference
of performance of the control schemes. In particular, it is shown
that standard vision-based control methods have in general low
rates of convergence. Thus, the performance of vision-based
control could be improved using schemes which perform like
the Newton minimization algorithm that has a high convergence
rate. Unfortunately, the Newton minimization method needs the
computation of second derivatives that can be ill-conditioned
causing convergence problems. In order to solve these problems,
this paper proposes two new control schemes based on efficient
second-order minimization techniques.

I. INTRODUCTION

Vision-based control is a very flexible method for posi-
tioning a robot using visual feedback. A positioning task is
generally formulated as an output regulation problem using
a teaching-by-showing technique [2]. The robot is positioned
when current image features reach their corresponding refer-
ence values. The control problem can also be formulated as
a nonlinear least squares minimization problem. Thus, vision-
based robot control methods can be classified following an
analogy with minimization methods. The classification will
be limited to methods which use cost function derivatives.
In order to avoid non-smooth robot motion, methods needing
multiple evaluations of the cost function, like the simplex
method [3], will not be considered here. Indeed, the evaluation
of the cost function is equivalent to moving the robot to a
given position. Comparing the rate of convergence between
minimization algorithms, help us to understand the difference
of performance of the control schemes [1]. In this paper, it
will be shown that standard vision-based control methods [2]
correspond to minimization methods that have a low con-
vergence rate. Thus, the performance of vision-based control
can be improved using schemes performing like the Newton
minimization algorithm which has higher convergence rate.
Unfortunately, the Newton minimization method requires the
computation of second derivatives that can be ill-conditioned
causing convergence problems. For these reasons, two new
control schemes with high convergence rates are proposed
in the paper. The two control schemes are computationally
efficient since they need only first derivatives. The new control
methods can be used with any visual servoing scheme. As an
example, they are applied to image-based visual servoing for
solving the well known advance/retreat problem [4].

II. THEORETICAL BACKGROUND

Let x ∈ R
6 be a vector containing the global coordinates

of the end-effector frame in an open subset of R
3 × SO(3).

Let ẋ = f(x,v) be the kinematic equation linking the control
input v to the derivative of the state vector. Consider now the
task of positioning the robot end-effector frame using some
(n×1) output vector s(x).

A. Formulating the positioning as a control problem

Moving the robot to a reference position x1 starting from an
initial position x2 can be formulated as an output regulation
problem. The control problem consists in finding a feedback
law v such that the output s(x) reaches a desired output s(x1).

B. Formulating the positioning as a minimization problem

The output regulation problem can also be viewed as a
Nonlinear Least Squares (NLS) minimization. The problem
can be formulated in two different ways. The first is to move
the current frame towards the reference frame solving the
problem P1 starting from x2:

min
x

f1(x) =
1

2
(s(x)− s(x1))

>(s(x)− s(x1)) (1)

The second is to “virtually” move the reference frame towards
the current frame solving the problem P2 starting from x1:

min
x

f2(x) =
1

2
(s(x)− s(x2))

>(s(x)− s(x2)) (2)

The reference only “virtually” moves since the current position
is updated. The difference between the two problems will
become clear in the following section. Several minimization
methods can be used to solve the problems. The performance
of a minimization method can be measured by its asymptotic
convergence rate r (for a rigorous definition see [6]). Without
going into further details, the bigger is r the faster the
algorithm will converge to the solution. Consider for example
a cost function f(x) quadratic in x. Then, an algorithm
with “quadratic convergence” (r = 2) will find the exact
solution in only one step. On the other hand, an algorithm
with “linear convergence” (r = 1) will need an infinite
number of iterations. Finally, an algorithm with “super-linear
convergence” will converge after a finite number of steps.
Note that, in the case of visual servoing, a high convergence
rate implies a camera trajectory closer to the geodesic in
R

3×SO(3) (i.e. a straight line for the translation and a rotation
around the axis of rotation). Indeed, being able to go in one
step to the solution means we know exactly the displacement
of the camera and we obtain better 3D trajectories.



III. ANALOGY BETWEEN CONTROL AND MINIMIZATION

In this section, several vision-based robot control methods
are classified following an analogy with well known minimiza-
tion methods. For sake of simplicity, only the first step of the
minimization is considered. Once the current position updated,
the step is repeated until convergence.

A. Steepest Descent (Jacobian Transpose)

The Steepest Descent minimization method (SDM) is based
on the first-order Taylor series of the cost function. For the
problem P1, consider first-order Taylor series of the cost
function f1(x) about x2, evaluated at x1:

f1(x1) ≈ f1(x2) +
∂f1(x)

∂x

∣

∣

∣

∣

x2

∆x

where ∆x = x1 − x2. For P2, consider the first-order Taylor
series of f2(x) about x1, evaluated at x2:

f2(x2) ≈ f2(x1)−
∂f2(x)

∂x

∣

∣

∣

∣

x1

∆x

Obviously, the gradients of the two functions are different.
Indeed, after setting J(x) = ∂s(x)

∂x
we obtain:

∂f1(x)

∂x

∣

∣

∣

∣

x2

= +∆s> J(x2)

∂f2(x)

∂x

∣

∣

∣

∣

x1

= −∆s> J(x1)

where ∆s = s(x2) − s(x1). The strategy of the SDM is
to move in the opposite direction to the gradient. Thus, the
displacements ∆x to solve P1 and P2 are respectively:

∆x = −λ
∂f1(x)

∂x

∣

∣

∣

∣

>

x2

= −λJ>(x2)∆s (3)

∆x = +λ
∂f2(x)

∂x

∣

∣

∣

∣

>

x1

= −λJ>(x1)∆s (4)

The positive gain λ tunes the amplitude of the displacement.
For P2, the Jacobian is constant since it is computed at the
reference position x1 while for P1 the Jacobian is varying
since it is computed at the current position x2. In robot control
theory the SDM corresponds to the Jacobian Transpose control
method (JTC). For example, the constant JTC has been used
in [7] while the varying JTC has been used in [8]. The SDM
has a slow (linear) convergence rate.

B. Newton

The Newton minimization method (NM) is based on the
second-order Taylor series of the cost function. For the prob-
lem P1, consider the second-order Taylor series of the cost
function f1(x) about x2, evaluated at x1:

f1(x1) ≈ f1(x2) +
∂f1(x)

∂x
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x2

∆x+
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∆x>

∂2f1(x)

∂x2

∣

∣

∣

∣

x2
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For P2, consider the second-order Taylor series of the cost
function f2(x) about x1, evaluated at x2:

f2(x2) ≈ f2(x1)−
∂f2(x)

∂x
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∣

x1

∆x+
1

2
∆x>

∂2f2(x)
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where the Hessian matrices of the cost functions f1(x) and
f2(x) are respectively:

∂2f1(x)

∂x2

∣

∣

∣

∣

x2

= J>(x2)J(x2) +
n
∑

k=0

Hk(x2)∆sk (5)

∂2f2(x)

∂x2

∣

∣

∣

∣

x1

= J>(x1)J(x1) +

n
∑

k=0

Hk(x1)∆sk (6)

Hk(x) being the Hessian matrix of function sk(x). The
solutions for P1 and P2 are respectively:

∆x≈−λ

(

∂2f1(x)

∂x2

∣

∣

∣

∣

x2

)−1
∂f1(x)

∂x

∣

∣

∣

∣

>

x2

(7)

=−λ

(

J>(x2)J(x2) +
n
∑

k=0

Hk(x2)∆sk

)−1

J>(x2)∆s

∆x≈+λ

(

∂2f2(x)

∂x2

∣

∣

∣

∣

x1

)−1
∂f2(x)

∂x

∣

∣

∣

∣

>

x1

(8)

=−λ

(

J>(x1)J(x1) +

n
∑

k=0

Hk(x1)∆sk

)−1

J>(x1)∆s

In the NM, the direction of descent of the SDM, defined by
the gradient, is modified by the inverse of the Hessian. The
convergence rate of NM is quadratic. Thus, if the function to
minimize is concave quadratic, the NM method will attain the
minimum in a single step. The minimum for the approximated
problem is obtained for λ = 1. If the original cost function
is not quadratic, the minimum for the approximated problem
does not correspond to the minimum of the original cost
function. Thus, it can be preferable to modulate the amplitude
of the displacement by setting λ to a different value. The
NM has a much faster convergence rate than SDM but may
not converge when the Hessian is negative definite. Another
drawback of the NM method can be the computational burden
for the computation of the Hessian.

C. Approximated Newton

Approximated Newton methods are based on the modifica-
tion of the direction of descent defined by the gradient with
an approximation of the Hessian of the function. To overcome
NM convergence problems, the approximation of the Hessian
is chosen to be always definite positive. The price to pay is
a slower convergence rate depending on the accuracy of the
approximation.

1) Gauss-Newton (Jacobian pseudo-inverse):

The Gauss-Newton minimization method (GNM) takes into
consideration the special structure of the NLS minimization.
It is based on the first-order Taylor series of the vector function
s(x). For the P1 and P2 problems we have respectively:

∆s ≈ −J(x2)∆x (9)

∆s ≈ −J(x1)∆x (10)

Let the Jacobian have full rank. The displacement can be
computed using the pseudo-inverse of the Jacobian matrix



J+ = (J>J)−1J>. For this reason, the GNM method is
the equivalent to the Jacobian Pseudo-inverse control method
(JPC). We obtain for the problems P1 and P2 respectively:

∆x ≈ −λ(J>(x2)J(x2))
−1 J>(x2)∆s = −λJ+(x2)∆s (11)

∆x ≈ −λ(J>(x1)J(x1))
−1 J>(x1)∆s = −λJ+(x1)∆s (12)

It must be noticed that the positive symmetric matrix
J>(x)J(x) is an approximation of the Hessian matrix. The
GNM method achieves quadratic convergence when the vector
s(x) is linear on x (i.e. the cost function is quadratic),
otherwise, the convergence is only linear. Both constant and
varying JPC methods have been used in [9].

2) Levenberg-Marquardt (Damped Least Squares):

The Levenberg-Marquardt minimization method (LMM) can
be thought of as a method which allows to smoothly pass from
Gauss-Newton method to the Steepest Descent method. The
SDM will be used far from the minimum, but when we get
closer to it we will use the GNM. The LMM is based on the
following approximations:

∆x ≈ −λ(J(x1)
>J(x1) + γD)−1J(x1)

>∆s (13)

∆x ≈ −λ(J(x2)
>J(x2) + γD)−1J(x2)

>∆s (14)

Several choices for the diagonal matrix D are possible. The
simplest one is to set the matrix equal to the identity (Lev-
enberg [10]), while a more sophisticated one is to set the
matrix equal to the entries on the diagonal of J>J (Marquardt
[11]). For a large γ the method approaches the Steepest
Descent method, while for a small γ the method approaches
the Gauss-Newton method. In robotics, the LMM method is
called Damped Least Squares control method (DLSC) [12]
[13]. Since the LMM method is a blending of methods with
linear convergence it cannot achieve quadratic convergence.
However, the DLSC has been used in robotics since it can
help avoiding problems with singularities (the matrix J>J is
not invertible if the Jacobian is not full rank) and it gives a
numerically stable method.

3) Quasi-Newton:

The goal of the Quasi-Newton minimization methods (QNM)
is to build a sequence of symmetric positive definite matrices
Ak such that the sequence asymptotically converges to the
true Hessian ∂2f(x)

∂x2 . The approximated Hessians are used in
equations (7) and (8) instead of the true ones. Usually, we
choose A0 = I so that the first step of a quasi-Newton method
coincides with a Steepest Descent step. For a NLS problem, we
can also choose A0 = J>J so that the first step of a quasi-
Newton method coincides with a Gauss-Newton step. Well
known algorithms used to build the sequence are the Davidon-
Fletcher-Powell algorithm and the Broyden-Fletcher-Goldfarb-
Shanno algorithm [6]. Both algorithms converge to the true
Hessian in 6 steps if f(x) is a quadratic form. It means we
need at least 6 iterations of the algorithm before going in ”one
step” to the optimum (like the Newton minimization method).
In fact, the algorithm is at most super-linearly convergent. The
QNM control has been applied to visual servoing in [14].

IV. EFFICIENT SECOND-ORDER CONTROL METHODS

The SDM, GNM and LMM methods have low convergence
rates. The QNM method converges quadratically only asymp-
totically, while the NM method converges only if the Hessian
is definite positive. The aim of this paper is to propose new
control methods that achieve high convergence rates (at least
quadratic) and avoid convergence problems of NM. Similarly
to the GNM, I take into consideration the special structure of
the NLS minimization. On the other hand, instead of the first-
order Taylor series, the control laws proposed in this paper are
based on the second-order Taylor series of s(x):

∆s = −J(x1)∆x+
1

2
M(x1,∆x)∆x+Os2(∆x3) (15)

∆s = −J(x2)∆x−
1

2
M(x2,∆x)∆x+Os1(∆x3) (16)

where Os1 and Os2 are the reminders, M(x1,∆x) and
M(x2,∆x) are matrices containing all the n Hessian matrices
of the (n×1) vector function s(x):

M(x1,∆x) = (∆x>H1(x1),∆x>H2(x1), · · · ,∆x>Hn(x1))

M(x2,∆x) = (∆x>H1(x2),∆x>H2(x2), · · · ,∆x>Hn(x2))

Starting from these equations it is possible to design two
efficient second-order control methods that will be called
respectively Mean of Jacobian Pseudo-inverses (MJP) and
Pseudo-inverse of the mean of the Jacobians (PMJ).

A. Mean of Jacobian Pseudo-inverses

Multiplying both sides of equation (15) by J+(x1) and both
sides of equation (16) by J+(x2) we obtain:

∆x = −J+(x1)∆s+
1

2
J+(x1)M(x1,∆x)∆x+O

′

s2(∆x3) (17)

∆x = −J+(x2)∆s−
1

2
J+(x2)M(x2,∆x)∆x+O

′

s1(∆x3) (18)

Let the matrix J+(y)M(y,∆x) be a function of y. Consider
its first-order Taylor series about x1, evaluated at x2:

J+(x2)M(x2,∆x) = J+(x1)M(x1,∆x)+OJ+(∆x2) (19)

where the reminder OJ+ is quadratic in ∆x. Computing the
mean of equations (18) and (17), and plugging equation (19)
into the mean, we obtain:

∆x ≈ −
1

2
(J+(x2) + J+(x1))∆s+OMJP (∆x3) (20)

where:

OMJP (∆x3) = O
′

s1(∆x3) +O
′

s2(∆x3) +OJ+(∆x2)∆x

is the total remainder which is cubic in ∆x. In conclusion, the
mean of first-order approximations of the displacement, given
in equations (11) and (12), is a second-order approximation
of the displacement:

∆x ≈ −λ
1

2
(J+(x1) + J+(x2))∆s (21)



B. Pseudo-inverse of the mean of the Jacobians

We only consider problem P1 since the same result can be
obtained for P2. Consider the second-order Taylor series of
the Jacobian J(x) about x2 and evaluated at x1:

J(x1) = J(x2) +M(x2,∆x) +OJ(∆x2) (22)

where OJ is the remainder. This formula provides an estima-
tion to the second-order of matrix M(x2,∆x):

M(x2,∆x) = J(x1)− J(x2)−OJ(∆x2) (23)

Plugging this equation into equation (18) we obtain:

∆s = −
1

2
(J(x1) + J(x2))∆x+OPMJ (∆x3) (24)

where OPMJ (∆x3) = Os2(∆x3)−OJ (∆x2)∆x is the total
reminder which is cubic in ∆x. As a consequence, a second-
order approximation of s(x) is again obtained using only first
derivatives:

∆s ≈ −
1

2
(J(x1) + J(x2))∆x (25)

The displacement can be obtained by computing the pseudo-
inverse of the mean of the Jacobians:

∆x ≈ −2λ (J(x1) + J(x2))
+
∆s (26)

Note that for both second-oder methods the optimal minimiza-
tion gain λ is 1. A similar control law with rough approxi-
mations of the Jacobians has been recently used in [15], but
without any theoretical justification.

C. Differences between the two methods

Both methods compute a second-order approximation of the
displacement ∆x. Therefore, despite they only use first deriva-
tives, they have at least quadratic convergence. In conclusion,
both methods will perform better than standard methods.
However, there is a little difference between the two methods.
When the vector s(x) is quadratic in x then Os1 = Os2 =
OJ = 0. Thus, the reminder OPMJ = 0 and equation (26) is
exact. This means that the PMJ method has indeed a “quartic”
convergence rate. On the other hand, even if s(x) is quadratic
in x the reminder OJ+ 6= 0. When s(x) is not quadratic in
x and ∆x is big the approximations are not valid any more
and the behavior of the two methods is unknown. Continuing
research will give an insight into their differences.

V. COMPARISON BETWEEN CONTROL METHODS

The convergence rate of minimization methods help us
to understand the performance of control methods. Indeed,
high convergence rates are achieved when the displacement
is correctly estimated. For control methods, the direction of
displacement is more important since the closed-loop compen-
sates for errors on amplitude. The comparison between min-
imization/control methods is made here considering a simple
example. Suppose a (4×1) vector function s(x) is quadratic
in the (2×1) state vector x = (x, y). The NLS cost function is
thus quartic in x. Suppose the state to reach is x1 = (0.1, 0.2).
The simulation is repeated 4 times with different starting

points: x2 ∈ {(±1.5,±1.5)}. Suppose we can measure J(x1)
and J(x2) without knowing neither x1 nor x2. The results for
8 different minimization methods are given in Figure 1. The
contours represent isolines (i.e. the cost function has the same
value for each point of the contour) while the lines represent
the paths for each starting point. Obviously, the ideal path (i.e.
the shortest one) would be a straight line. Figure 1(a) shows
that the varying JTC moves always in a direction perpendicular
to the isolines (i.e. the steepest descent direction). For this
reason, it has a slow convergence rate and can not reach the
minimum following a straight line. The paths for the constant
JTC method are even longer (see the length of the paths in
Figure 1(b)) since the Jacobian is computed at the reference
position. As expected, the constant JPC (Figure 1(d)) and the
varying JPC (Figure 1(c)) performs better than the constant
JTC and the varying JTC respectively. Ill conditioned and
indefinite Hessian matrix cause the oscillations, observed in
Figure 1(e), of the varying NC method.

(a) Varying JTC method (b) Constant JTC method

(c) Varying JPC method (d) Constant JPC method

(e) Varying NC method (f) Constant NC method

(g) MJPC method (h) PMJC method

Fig. 1. Comparing the behavior of 8 different control methods.



In two cases the constant NC (see Figure 1(f)) did not
converge proving that the NC performs correctly only in a
neighborhood of the solution. The MJPC method gives better
results than previous methods (see the paths in Figure 1(g)).
Finally, the PMJC method obviously gives the best solution
since the paths in Figure 1(h) are straight lines from the
starting points. Indeed, when the function is exactly quartic
we can correctly estimate the displacement (in only one step)
and thus the correct descent direction regardless on the shape
of the isolines. Even if we do not take a full length stem (i.e.
λ < 1), the trajectory in the state space will be optimal.

VI. APPLICATION TO IMAGE-BASED VISUAL SERVOING

Consider the task of positioning an eye-in-hand camera with
respect to a target composed of 6 feature points. In order to
apply the new control scheme to visual servoing we must be
able to compute the Jacobians at the reference and the current
positions. Let the displacement of the camera be approximated
by ∆x ≈ v dt, where v is the camera velocity. Thus, the
Jacobian J(x1) coincides with the interaction matrix computed
at the reference position and the Jacobian J(x2) coincides with
the interaction matrix computed at the current position. Let us
suppose that the depths of the points are correctly estimated. In
order to show the improvement of the new control laws over
standard control laws I consider here the very well known
retreat/advance problem [4]. The retreat/advance problem of
image-based visual servoing appears when coordinates of
points are used in s and when the camera rotation is around
the −→z axis. Standard control laws do not estimate accurately
enough the direction of displacement of the camera inducing
a backward motion (the retreat problem) or a forward motion
(the advance problem). A degenerated case (known as the
Chaumette Conundrum [5]) appears when the camera rotation
reaches ±π. The simulation is repeated for 6 different starting
points rz ∈

{

π
6 ,

π
3 ,

π
2 ,

2π
3 ,

5π
6 , π

}

, tz = 0 ∀ rz .

A. Standard control laws

The results are obtained with the JPC methods. Similar
retreat/advance behavior is obtained with other methods.

1) Constant Jacobian (advance problem):

In the first set of simulations, the Jacobian is constant and
computed at the reference position. Figure 2(a) shows the the
isolines of the cost function projected into the subspace (~tz ,
~rz) and the paths for each starting point. Since the initial
movement is a pure rotation, the ideal path should be a straight
line perpendicular to the ~tz axis (i.e. tz = 0). On the contrary,
we observe that as rz reach ±π the translational motion
becomes bigger since the isolines become perpendicular to
the ~tz axis (i.e. the steepest descent direction is along ~tz).
Figure 2 shows also the detailed results for a rotation of π/4.
The camera moves towards the target (see the translation error
initially increasing in Figure 2(c)) and it correctly rotates at the
same time (see the rotation error decreasing in Figure 2(d)).
Due to this undesired advancement some features can go out
of the camera field of view when the camera comes too close
to the target.
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(a) Path in subspace (~tz , ~rz)
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(b) Image trajectory
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(d) Rotation error

Fig. 2. The advance problem with the constant JPC. The paths for different
initial rotations and the details for an initial rotation rz = π/4.

2) Varying Jacobian (retreat problem):

In the second set of simulations, the Jacobian is updated at
each iteration. The results of the simulations are plotted in
Figure 3(a). As the initial rotation reaches π, the translation
becomes bigger and bigger. Due to this undesired retreat the
robot might reach the limit of its workspace. Figure 3(c) shows
the translation induced when the initial rotation is rz = π/4.
The camera moves backwards and it correctly rotates at the
same time (see the rotation error in Figure 3(d)). For both
constant and varying JPC methods the approximation of the
Hessian is not good enough to modify the direction of the
steepest descent.
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(b) Image trajectory
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Fig. 3. The retreat problem with the varying JPC. The paths for different
initial rotations and the details for an initial rotation rz = π/4.



B. Efficient second-order control laws

For the proposed control laws the Chaumette Conundrum
corresponds to an unstable local minimum for both methods.
In that case, there are two symmetric possible solutions
(turning clockwise or anti-clockwise) and the problem can be
solved by choosing one of the solutions.

1) Mean of the Jacobian Pseudo-inverses: Using the MJPC
method we obtain better results even for very large camera
displacements. Except for rz = π, Figure 4(a) shows that the
paths are very close to straight lines parallel to the ~rz axis. The
direction of rotation is correctly estimated (see Figure 4(d)).
Despite a small translation error still visible in Figure 4(c),
the method gives better results than the previous ones.

−0.5 0 0.5 1 1.5 2 2.5

−3

−2

−1

0

1

2

3

(a) Path in subspace (~tz , ~rz)

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

  1 

  2 

  3 

  4 

  5 

  6 

  1 

  2   3 

  4 
  5 

  6 

(b) Image trajectory
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Fig. 4. Results using the MJPC method. The paths for different initial
rotations and the details for an initial rotation rz = π/4.

2) Pseudo-inverse of the mean of the Jacobians: Using the
PMJC method, the camera motion is now a pure rotation.
Indeed, the paths plotted in Figure 5(a) are straight lines
proving that the PMJC method provide the best result since
no additional motion is induced in the ~tz direction (see
Figure 5(c)). This is a simple example of the improvement
that can been obtained over standard control laws. Indeed,
even using a rough approximation of the Jacobians as in [15]
a lager convergence domain and better 3D camera trajectory
have been experimentally observed for generic camera dis-
placements.

VII. CONCLUSION

In this paper, two new control laws with high convergence
rates have been proposed. The control laws can be used for
improving the performance of any vision-based robot control
scheme. As an example, it has been shown that the new control
methods allow to solve the well known camera advance/retreat
problem of image-based visual servoing. Since they provide a
better estimation of the camera displacement (to second order),
the new control methods are expected to have a larger stability
domain. Future work will be devoted to experiments on a real
robot and to the stability analysis.
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(b) Image trajectory
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Fig. 5. Results using the PMJC method. The paths for different initial
rotations and the details for an initial rotation rz = π/4.
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