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Abstract— The goal of this paper is to present a survey of
robust estimation techniques with a special focus on robotic
vision applications. In this particular context, constraints due
computation time have to be considered in the choice of the
estimation algorithm. Among the numerous techniques proposed
in the literature to obtained robust estimation we have, not being
exhaustive, Hough transform, RANSAC (Random Sample Con-
sensus), the LMedS (Least Median of Squares), the M-estimators,
etc. In this survey, we describe these various approaches in the
light of a simple example. Finally, we illustrate the use of robust
estimation techniques by various examples in robotic vision.

I. INTRODUCTION

The goal of this paper is to present a survey of robust esti-
mation techniques with a special focus on robotic vision appli-
cations. In this particular context, constraints due computation
time have to be considered in the choice of the estimation
algorithm. We adopt the following definition for robustness:
an estimation algorithm is “robust” if its properties (i.e. the
ability of estimating correctly some parameters) remain valid
despite the uncertainty in the model, measurements errors and
modifications in the environment.

An image sequence represents an almost infinite source of
information which is extremely difficult to model exhaustively
by analytical development. This includes dynamic problems
such as moving objects, multiple occlusions, changes in illu-
mination due to varying light sources, different visual medium
such as water and air, etc... It is clear that handling all the
potential sources of error by analytical classification is a very
complex and difficult task. If a camera provides very rich low-
level information about the environment, extracting various
high level information or visual features necessary to solve a
specific problem is a non trivial issue. Furthermore, the fact
that these visual features have to be extracted with a sufficient
precision is an important and usually non realistic hypotheses.

The considered high level information may be very differ-
ent according to the considered problem: depth information,
relative camera/scene position, intrinsic camera parameters,
robot parameters, etc. Considering most of applications, simple
photometric or geometric models may be sufficient for esti-
mating the information needed in most of robotic applications.
Projective geometry is, for example, a powerful mathematical
tool to model the geometry of the environment and the image
acquisition process. Nevertheless, when real images of a real
environment are considered (e.g., for robotics navigation in

outdoor environment), this modeling process is no longer re-
alistic nor valid and robust algorithm are required to overcome
uncertainty in data extraction and important outliers.

In related literature, many different approaches exist to
treat external sources of error. To handle the outlier issue,
it is possible to classify robust estimation approaches in
two main classes. The former approach consider an outlier
detection prior to the parameters estimation process. Among
this approaches, the most classical are voting methods such as
the Hough transform or RANSAC (Random Sample Consen-
sus) [11]. This latter algorithm performs an estimation of the
considered parameters from a minimal set of data and other
data that confirms this first estimation are then integrated in
the estimation process. The best consensus is retained. The
second class of approaches allows to solve simultaneously the
outliers detection and parameters estimation process. Among
this method we have Least Median of Squares (LMedS) [23],
LTS, and M-estimators, L-estimators, R-estimators [17]. The
objective function to be minimized is modified to reduce the
sensitivity to outliers. To be efficient, this approaches also
estimate the standard deviation of the inliers (ie, the “good”
data).

One of the main characteristic of a robust method is its
breakdown point. Breakdown point is the percentage of out-
liers leading to a wrong estimation. For example, considering
the classical least squares algorithm, this breakdown point is
of 0% since only one outlier is sufficient to obtain a wrong
estimation of the parameters. Other characteristics, important
in the robotic context, are the complexity (from a computation
time point of view) and the convergence rate. If complexity
it to high or convergence too slow, in a robotics context the
control rate decreases which may prove to be a problem. We
will see that there is usually a trade-off between convergence
rate and breakdown point.

To analyze the behavior of the different algorithms we will
consider an academic example. We first recall the estimation
issue. The two classes of algorithms, estimators (LMedS, M-
estimators,...) and voting (Hough, Ransac) approaches, are
considered in section III and IV. Finally to illustrates the
use of these estimation we will consider two computer vision
problem useful for robotics application (pose estimation and
object tracking) and a control problem (visual servoing).



II. PARAMETERS ESTIMATION

The considered problem is the estimation of a set of
parameters using data extracted from one or more images.
The most classical algorithm to handle this problem is the
well known least squares approach.

A. Least squares minimization
Assume that a model of a set of signals sk(x), that rely

on a set of unknown parameters x, and on measurements
s∗k = sk(x

∗) of these signals are available. We defined the
residual rk by rk = sk(x) − s∗k and r(x) the (n×1) vector
that contains all the residual ordered by increasing order such
that r21(x) ≤ r22(x) ≤ ... ≤ r2n(x). Our problem is to find the
value x∗ of the unknown parameters from measured signals
s∗k. The most classical approach which come back to Gauss
and Legendre [23], is the least squares approach (LS). The
goal is to minimize the following objective function:

C(x) = r>r =

n∑

k=1

r2k(x) (1)

If sk(.) is linear in x the solution to this problem can be
obtained by a classical linear least squares approach. Nev-
ertheless in the general case, when sk(.) is a non linear
function of x and the solution of this optimization problem
can be obtained using an iterative approach (Newton-based
minimization algorithms) considering an initial estimation x0

of the parameters.

B. An academic example
In the reminder of this paper we will consider the various

estimation method in the light of an academic example. Let
us consider that n = 100 points of interest are extracted and
matched in two images. Let us assume that the camera has
made a 10 mm translation along the ~x axes. The goal is to
estimate this camera displacement using point coordinates and
the knowledge of each point depth. The equation that links
the normalized coordinates of these points in the two image
is given by:

u2k = u1k +
tx
Z1k

(2)

In this simple problem, we have only one parameter to estimate
(x = tx) and it is easy to visualize the objective function
related to the various methods. The objective function is
quadratic and its minimum is x∗ = 10 mm (see figure 1).
The least square problem LS is easily solved for any initial
condition. Nevertheless, we will always consider the same
initial condition that is x0 = 0.

C. Outliers issue
The measurements process is never perfect, and it seems

reasonable to assume that there are spurious data (outliers). In
a robotic vision context, these outliers may due to matching
errors, occlusions, lighting variation, etc.

In this case, the least squares objective function is modified
and the minimum does not correspond to the actual value of
the parameters to be estimated. For example, on Figure 2a
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Fig. 1. Least squares objective function (LS).

the least squares objective function is displayed for a set of
data where measures are randomly contaminated with 20% of
outliers. The minimum of the objective function is x = 6 mm
when the actual value is x = 10 mm. Similarly, figure 2b the
least squares objective function is displayed for a set of data
where measures are randomly corrupted with 40% of outliers.
The minimum of the objective function is now x = 4 mm. In
these two figures the green points represents the initial value of
x and the red points the results of the minimization. As can
be expected, it shows that the LS approach is not robust to
outliers. It breakdown point is 0% which that only one outlier
is enough to corrupt the estimation process. In some case, the
minimum can be modified in a tremendous way is the outlier
have a high influence (leverage data [23]).
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Fig. 2. Least squares objective function with (a) 20% and (b) 40% of outliers.

The robust estimation methods that are described in the next
sections allows to estimate the actual value of the considered
parameters despite the presence of these outliers.

III. ROBUST ITERATIVE METHODS

Least squares are not robust because the objective function
can grow indefinitely and outliers may become dominating
w.r.t. measurements that actually verify the actual model.
Alternatively, the robust methods modify the objective function
so as to limit the influence of the most significant residues. The
principal consequence is usually, a slower convergence speed
of the optimization algorithms. Indeed, it is very difficult to
distinguish, in a first time, outliers and inliers. Therefore, some
inliers may be initially filtered which leads to a reduction of
the convergence speed. Nevertheless, the most difficult case
to solve arises when small but aberrant residues move the
minimum of the objective function.



A. LMedS (Least Median of Squares)
The robust approach LMedS [23] minimize the following

objective function:

C(x) = median
(
r21(x), r22(x), ..., r2n(x)

)
(3)

The median is seen as a robust estimator since it does not
consider 50% of the most significant residues. Nevertheless,
it has two major disadvantages:

• the objective function index is not differentiable. Methods
of minimization based on the gradient of the objective
function are thus very delicate to implement;

• the convergence speed of the minimization algorithms can
be extremely slow if the residues are distributed in such
a way that the median has a very weak gradient.

In the considered academic case, the minimum is correctly
localized even in the presence of 20% or 40% outliers in
the measurements. Figure 3 shows the objective functions in
both cases. Beginning from x0 = 0 (the green points in the
figure) one finds the minimum correctly (the red point in the
figure). This method has a breakdown point of 50% (highest
possible) but also an extremely slow convergence. In order to
increase the convergence speed several techniques are possible.
One consists in carrying out random samples of measurement
subsets in a way similar to RANSAC algorithm (see next
section). Another possibility is to use method LTS.
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Fig. 3. LMedS objective function with (a) 20% and (b) 40% of outliers.

B. LTS (Least Trimmed Squares)
In order to improve the convergence speed of the LMedS

method, Rousseeuw [23] proposed a method known as LTS.
It consists in minimizing the sum of the squares of the q first
residues:

C(x) =

q∑

k=1

r2k(x) (4)

In general, q = n/2 is chosen but it is possible to optimize the
choice of q with an a priori knowledge of the percentage of
outliers. The objective function is similar to the LMedS’ one
but the gradient is usually higher. The contribution of the q
first residues makes the objective function smoother. However,
this function remains non differentiable. Figure 4 shows the
objective function in the previously considered cases. The
minimum is correctly found in the presence of 20% outliers.

When the percentage of outliers increases to 40%, it is
always possible to find the true minimum but a local mini-
mum appears in the objective function (although the global
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Fig. 4. LTS objective function with (a) 20% and (b) 40% of outliers.

minimum is correctly located as can be seen on Figure 4b).
This problem, which can also appear for other robust methods
(including for the LMedS), depend on the distribution of the
outliers and it is very difficult to analyze. In a general way, it
is a priori impossible to figure out which robust method will
allow to avoid the formation these local minima. The choice of
the optimization algorithm (Gradient, Newton, Gauss Newton,
Levenberg Marquardt, Simplex) is then of great importance.

C. M-estimation

The principle of the M-estimators [17] is to modify the
objective function of the least squares by penalizing the largest
residues. The objective function is then defined by:

C(x) =

n∑

k=1

ρ(rk(x)) (5)

where the function ρ is at least C0. Various function ρ were
proposed in the literature. The breakdown point of the M-
estimators is theoretically 0% as for the LS. However, this
is the worst case M-estimators failed only with a significant
number of spurious measurements.

Among all the possible robust estimator ρ, the most popular
are those proposed by Tukey [1] and Huber [17]. Function ρ
proposed by Huber is defined by:

ρ(rk(x)) =

{
1
2r

2
k(x) if r2k(x) ≤ c

c
(
|rk(x)| − c

2

)
if r2k(x) > c

(6)

where c = 1.345σ̂ and σ̂ is a robust estimation of the standard
deviation of the inliers. It is usually defined by the Median
Absolute Deviation (MAD) given by:

σ̂ = 1.48median(|r − median(r)|). (7)

In the function ρ proposed by Huber, the weakest residues
are regarded as in a LS whereas the most significant residues
are quickly limited (but not canceled). The figure 5 shows the
objective function in the considered cases. Even if theoretically
the breakdown point is 0%, the performance index of the M-
estimators has its global minimum correctly localized. How-
ever, when the percentage of outliers is high, local minima
can, here again, appear (although the global minimum is still
correctly located).
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Fig. 5. M-estimator objective function with the Huber estimator with (a)
20% and (b) 40% of outlier.

Function ρ proposed by Beaton-Tukey [1] is defined by:

ρ(rk(x)) =





c2

6

[
1 −

(
1 −

(
r
k

)2
)3

]
if r2k(x) ≤ c

c2

6 if r2k(x) > c

(8)

where c = 4.6851σ̂ and where σ̂ is a robust estimation of the
standard deviation of the inliers . As in the previous case, in the
function ρ proposed by Beaton-Tukey, the weakest residues are
regarded as in a LS whereas the most significant residues are
quickly canceled (completely this time). The figure 6 shows
results very similar to the results obtained by the Huber’s M-
estimator.
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Fig. 6. M-estimator objective function with the Tukey estimator with (a)
20% and (b) 40% of outlier.

An advantage of the M-estimation is that it can be imple-
mented using a simple iterative re-weighted least squares algo-
rithm. Considering a linear problem, the actual least squares
problems aims at solving for x the following linear system
Ax = b where x and b are vectors and A is a matrix. Iter-
ative re-weighted least squares algorithm aims at solving the
following system DAx = Db where D = diag(w1, . . . , wn)
is a diagonal matrix where wi reflect the confidence of each
feature. The algorithm acts as follows: estimate weights using
one of the many robust criterion suggested in the literature
(see next paragraph for example), estimate the value of x by
solving the weighted system, and reiterate until convergence.
These methods act like automatic outlier rejectors since large
residual values lead to very small weights.

The weights wi, which reflects the confidence of each
feature, are usually given by [17]: wi = ψ(r)

r
, where the

influence function ψ(r) = ∂ρ(r)
∂r

. When Tukey’s function is
considered, this influence function is given by:

ψ(r) =

{
r(C2 − r2)2 , if |r| ≤ c
0 , else, (9)

IV. ROBUST VOTING METHODS

The estimation of the parameters with the voting methods
rely on the use of the minimum of set of measurements. Each
estimation, with a particular measurement sample, corresponds
to a “vote” for the computed parameters. The set of chosen
parameters, i.e. the one that gets the highest number of vote,
is retained as the correct one.

A. Hough transform
The Hough transform [16] is a very robust voting method.

The original version of the method suggested by Hough was
modified by [9]. Several alternatives have been proposed [19].
This approach relies on a discretization of the parameters
space. One then obtains hypercubes in the space state. Accu-
mulators are associated with these hypercubes. For a specific
sample, the required parameters are estimated and the corre-
sponding accumulator in the hypercube is incremented. This
process is reiterated until all the possible combinations have
been considered. The accumulator having the most significant
value corresponds to the best estimate of the parameters.

The Hough transform is well adapted to problems with
a significant number of data compared to the number of
parameters to be estimated. However, if the number data is
similar with the number of unknowns, it is difficult to find a
dominating accumulator. Moreover, due to the discretization
issue and to the noise it is possible to obtained a wrong
optimum. Nevertheless, the Hough transform is very robust
since it carries out a total and exhaustive research. Finally, this
technique is able to segment the data in several clusters which
verify the reference model. However, the transform of Hough
is very seldom used in robotic vision but for problems which
require the estimate of less than three or four parameters.
Indeed the computing times become rapidly prohibitive.

B. RANSAC
RANSAC [11] (Random Sample Consensus) is a probabilis-

tic voting method which have been proposed to reduce the
prohibitive computation time of classical voting approaches
(such as the Hough transform). Considering a minimal set
of measurements s, it is usually possible to compute the
parameters in a non degenerate configuration. The following
objective function is then computed:

C(x) =

n∑

k=1

ρ(rk(x)) with ρ(rk(x)) =

{
0 if r2k(x) ≤ c
1 if r2k(x) > c

(10)
and c = 2.5 σ̂. Let s the number of necessary measurements
to compute a solution and r the percentage of inliers. The
number m of random samples necessary to have a probability
p to find the actual parameter is given by:

m =
log(1 − p)

log(1 − (1 − r)s)

Figure 7 shows the objective function associated with
RANSAC. Red lines are the results of the estimation consid-
ering a random sample. For 20% of outliers, only 5 random



sample are sufficient to have a 95 % probability to find the
actual solution. When the number of outliers increases to 40%,
13 random samples are necessary.
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Fig. 7. RANSAC objective function with (a) 20% and (b) 40% of outliers.

The main advantage of Ransac w.r.t. the M-estimators is
that it does not required an initial estimate of the solution.

V. APPLICATION TO ROBOTS VISION

Many computer vision problems are of interest for robot
control or navigation. For example the following have been
considered: homography estimation from point correspon-
dence [15], [12], [7], [25], 2D motion estimation [21], [13],
3D rigid transformation from a set of 3D points [12], pose
estimation [11], [14], [8], [5], [24], essential or fundamental
matrix estimation [27], camera calibration, eye-to-hand cali-
bration, slam, visual servoing, etc.

In this paper we will just point out a few issue where robust
estimation have successfully considered: object tracking in an
image sequence, 3D camera localization, visual servoing.

A. Visual tracking of a target in an image sequence.
The robust estimation algorithms described in the previous

sections can be applied to a standard robotic vision problem:
the real-time visual tracking of a target in an image sequence.
If we suppose that the target is planar, the visual tracking
problem can be solved by estimating the homography matrix
which links the coordinates of corresponding points in two
images. We use the ESM visual tracking algorithm proposed
in [2]. The (3×3) homography matrix is defined up to a
scale factor. Thus, only 8 parameters have to be estimated.
These parameters can be estimated by solving a standard
least squares problem. However, as soon as outliers measures
are used (as for example a specular reflection on the target
surface), the visual tracking algorithm is not able to correctly
estimate the parameters. It is thus necessary to use a robust
estimation algorithm. Figure 8 show an example where M-
estimator are used to reject the outlier measures. The target is
selected manually in the first image and it is marked with a red
rectangle. In the following images, the target it tracked despite
the big illumination changes and big displacement of the object
in the image. By solving a standard least squares problem it
is not possible to track the object in all the sequence. On the
other hand, robust methods need more computation time. It is
thus important to use optimization techniques that compensate
the time spent at each iteration with a faster convergence. It

is the case of the ESM algorithm which use a second-order
optimization technique (ESM stands for “Efficient Second-
order Minimization”) allowing for a faster convergence. The
computation time is crucial in robotics applications. For ex-
ample, from the estimated homography matrix it is possible to
control a robot in real-time using a visual servoing technique
[3].

B. 3D camera localization.
When dealing with 3D camera localization or pose com-

putation, most of the approaches proposed in the literature
rely on a 3D registration issue. Although it is a very old
computer vision problem, e.g. [11], [4], it is still an important
research issue. To illustrate the problem, let us consider the
3D camera localization from a set of 2D point. The pose
estimation consists in estimating the frame transformation
cMo that minimize the forward projection error:

ĉMo = argmin
cMo

N∑

i=1

(
pi − prξ(

cMo,
oPi)

)2 (11)

where oP are the 3D coordinates of object points in the object
frame (object model), pi are their projection in the image
plane and prξ(.) is the projection function according to camera
intrinsic parameters ξ.

To obtain the solution of this minimization problem, robust
estimation can be considered: Ransac [11] was originally
developed to solve this problem, but the M-estimator have
been widely and successfully considered [14], [8], [5], [24].

Figure 9 shows the result of a 3D tracking process using
a robust model-based pose estimation process (Tukey M-
estimator) in each image [5]. This localization is used here
within a 2 1/2 D visual servoing experiment.

C. Robust visual servoing
Visual servoing is known to be a very efficient method

for positioning and target tracking tasks [18]. However, its
efficiency relies on correspondences between the position of
tracked visual features in the current image and their position
in the desired image which define a set of errors to be
minimized. If these correspondences contain errors then visual
servoing usually fails or converges upon a wrong position.

Dealing with robust visual servoing, the main (although it is
not the only one) source of errors include those introduced by
local detection and matching of features between the current
and desired images. Overcoming this class of error is often
achieved by improving the quality of tracking algorithms [26],
[20], [7] and feature selection methods [22]. These approaches
provide a robust input to the control law and as such treats
outlier rejection, in an image processing step, prior to the
visual servoing task (see Figure 10a). Nevertheless, it is clear
that handling all the potential sources of error by analytical
classification is a very complex and difficult task. It has
been shown that [6] the problem of statistically robust visual
servoing can be implemented directly at the control law level
(see Figure 10b).



Fig. 8. Robust visual tracking of a planar target with the ESM algorithm. The output of the algorithm is a homography matrix.

Fig. 9. Tracking within a 2D 1/2 visual servoing experiments. The four first images have been acquired in initial visual servoing step. In the reminder images
object is moving along with the robot (a-b) camera velocity in rotation and translation (c) error vector s − s

∗. Images are acquired and processed at frame
rate (50Hz)
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Fig. 10. Visual servoing with (a) traditional outliers rejection process at the
image processing level, (b) Outliers rejection within the control law

This approach features three main advantages. With respect
to more classical robust visual servoing techniques that rely

on a robust extraction of the visual features, it bypasses
intermediary decision steps which usually require thresholds to
be tuned for each specific application. Second, the confidence
in each visual feature relies on the value of all the other
features. Finally, the computed uncertainty values do not act
as a binary weight which completely rejects or accepts the
feature. Each feature may either gain or loose certainty over
time and during the execution of the control law.

Let us consider the generic positioning task. The goal of
visual servoing is essentially to minimize the error ∆ = s(r)−
s∗ between a set of visual features s(r), that depends of the
camera pose r, and a set of desired visual features s∗. The
control law that performs ∆ minimization is usually handled
using a least square approach [10], [18]. However when the
data contains outliers, such a classical approach is no longer
efficient.
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Fig. 11. Result of a positioning task using classical and robust control
law. Image (a) shows the initial camera position, image (b) shows the final
camera position for the reference experiment. A correspondence error is then
introduced between two points. Image (c) shows the final camera view when
no robust control law is considered (an error may be observed) and image.
With the robust method improves the behavior of the positioning task. Indeed
in the two other experiments where a weighting matrix is introduced in the
control law, the camera reaches its desired position (see image (d)) with a
very good accuracy despite the errors introduced in the data.

To embed a robust minimization in visual servoing, a
modification of the control law is required to allow outlier
rejection. For that, a weight is associated to each feature to
specify a confidence in its location. This leads to the following
error to be minimized (see Fig 10b and [6]):

e = D (s(r) − s∗) , (12)

where D is a diagonal weighting matrix: D =
diag(w1, . . . , wk). The weights wi reflects the confidence
we have in each visual feature and are computed using
M-estimators. The new control law is given by [6]:

v = −λ(DL)+D
(
s(r) − s∗

)
. (13)

The obtained results show the efficiency of this approach (as
shown on figure 11. More complete results are given in [6]).
It remains that the use of such a robust control law is far
from being incompatible with an effective and robust tracking
process. A fusion of the two diagrams of the figure 10 is not
only possible but desirable.

VI. CONCLUSION

this paper, we have reviewed the main robust estimation
methods used in robotic vision. Considering such methods is
necessary in order to achieved efficiently vision-based robotic
tasks in real environment. The counterpart for the robustness
is a higher computing time and a reduced convergence speed.
If the voting techniques (Hough, Ransac) or LMedS are very
efficient, the computing time is often too high to be used within
a robotic control law. Another advantage of Ransac is that it
provides an initial estimate of the parameters that is required
by the M-estimators. Once this initial estimate is computed M-
estimators represents a very good trade-off between robustness
and algorithmic effectiveness.
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